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Abstract—An important issue in multiobjective optimization is
the quantitative comparison of the performance of different algo-
rithms. In the case of multiobjective evolutionary algorithms, the
outcome is usually an approximation of the Pareto-optimal set,
which is denoted as an approximation set, and therefore the ques-
tion arises of how to evaluate the quality of approximation sets.
Most popular are methods that assign each approximation set a
vector of real numbers that reflect different aspects of the quality.
Sometimes, pairs of approximation sets are considered too. In this
study, we provide a rigorous analysis of the limitations underlying
this type of quality assessment. To this end, a mathematical frame-
work is developed which allows to classify and discuss existing tech-
niques.

Index Terms—Evolutionary algorithms, multiobjective opti-
mization, performance assessment, quality indicator.

I. INTRODUCTION

T HE MAIN subject of this paper can be best understood if
considering a setting as depicted in Fig. 1. We assume that

a solution to the optimization problem at hand can be described
in terms of adecision vectorin thedecision space . The func-
tion : evaluates the quality of a specific solution by
assigning it anobjective vectorin theobjective space .

Now, let us suppose that the objective space is a subset of the
real numbers, i.e., , and that the goal of the optimization
is to minimize the single objective. In such a single-objective
optimization problem, a solution is better than another
solution , if where and .
Although several optimal solutions may exist in decision space,
they are all mapped to the same objective vector, i.e., there exists
only a single optimum in objective space.

In the case of a vector-valued evaluation functionwith
, where , the situation of comparing two so-

lutions and is more complex. Following the well-known
concept of Pareto dominance, we can say thatdominates
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Fig. 1. Typical black box optimization problem where elements of the decision
space need to be determined such that the components of the corresponding
objective vector are optimal under the mappingfff .

if no component of is larger than the corresponding compo-
nent of and at least one component is smaller. Here, optimal
solutions, i.e., solutions not dominated by any other solution,
may be mapped to different objective vectors. In other words:
there may exist several optimal objective vectors representing
different tradeoffs between the objectives.

The set of optimal solutions in the decision spaceis in gen-
eral denoted asPareto-optimal set. With many multiobjective
optimization problems, knowledge about this set helps the de-
cision maker in choosing the best compromise solution. For in-
stance, when designing computer systems, engineers often per-
form a so-called design space exploration to learn more about
the Pareto-optimal set. Thereby, the design space is reduced to
the set of optimal trade-offs: a first step in selecting an appro-
priate implementation.

However, generating the Pareto-optimal set can be compu-
tationally expensive and is often infeasible, because the com-
plexity of the underlying application prevents exact methods
from being applicable. Evolutionary algorithms (EAs) are an
alternative: they usually do not guarantee to identify optimal
tradeoffs but try to find a good approximation, i.e., a set of
solutions whose objective vectors are (hopefully) not too far
away from the optimal objective vectors. Various multiobjective
EAs are available, and certainly we are interested in the tech-
nique that provides the best approximation for a given problem.
However, in order to reveal strengths and weaknesses of certain
approaches and to identify the most promising techniques, ex-
isting algorithms have to be compared—either empirically, e.g.,
[1]–[4], or theoretically, e.g., [5]. This, in turn, directly leads to
the issue of assessing the performance of multiobjective opti-
mizers.

The notion of performance includes both the quality of the
outcome as well as the computational resources needed to gen-
erate this outcome. Concerning the latter aspect, it is common
practice to monitor either the number of fitness evaluations or
the overall run-time on a particular computer—in this sense,
there is no difference between single and multiobjective opti-
mization. As to the quality aspect, however, there is a differ-
ence. In single-objective optimization, we can define quality
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by means of the objective function: the smaller (or larger) the
value, the better the solution. If we compare two solutions in
the presence of multiple optimization criteria, the concept of
Pareto dominance can be used, although the possibility of two
solutions being incomparable, i.e., neither dominates the other,
complicates the situation. However, it gets even more compli-
cated when we compare two sets of solutions because some
solutions in either set may be dominated by solutions in the
other set, while others may be incomparable. Accordingly, it
is not clear what quality means with respect to approximations
of the Pareto-optimal set: closeness to the optimal solutions in
objective space, coverage of a wide range of diverse solutions,
or other properties? It is difficult to define appropriate quality
measures for approximations of the Pareto-optimal set, and as a
consequence graphical plots have been used to compare the out-
comes of multiobjective EAs until recently, as Van Veldhuizen
and Lamont point out [2].

Progress, though, has been made, and several studies can be
found in the literature that address the problem of comparing ap-
proximations of the Pareto-optimal set in a quantitative manner.
Most popular are unary quality measures, i.e., the measure as-
signs each approximation set a number that reflects a certain
quality aspect, and usually a combination of them is used, e.g.,
[2], [6]. Other methods are based on binary quality measures,
which assign numbers to pairs of approximation sets, e.g., [7]
and [8]. A third and conceptually different method is the attain-
ment function approach [9], which consists of estimating the
probability of attaining arbitrary goals in objective space from
multiple approximation sets. Despite of this variety, it has re-
mained unclear up to now how the different measures are re-
lated to each other and what their advantages and disadvantages
are. Accordingly, there is no common agreement on which mea-
sure(s) should be used.

Recently, a few studies have been carried out to clarify this sit-
uation. Hansen and Jaszkiewicz [8] studied and proposed some
quality measures that allow to incorporate knowledge about the
decision maker’s preferences. They first introduced three dif-
ferent “outperformance” relations for multiobjective optimizers
and then investigated whether the measures under considera-
tion are compliant with these relations. The question they con-
sidered was: whenever an approximation is better than another
according to an “outperformance” relation, does the compar-
ison method also evaluate the former as being better (or at least
not worse) than the latter? More from a practical point of view,
Knowleset al. [10] compared the information provided by dif-
ferent assessment techniques on two database management ap-
plications. More recently, Knowles [11] and Knowles and Corne
[12] discussed and contrasted several commonly used quality
measures in light of Hansen and Jaszkiewicz’s approach, as well
as according to other criteria such as, e.g., sensitivity to scaling.
They showed that about one third of the investigated quality
measures are not compliant with any of the “outperformance”
relations introduced by Hansen and Jaszkiewicz.

This paper takes a different perspective that allows a more
rigorous analysis and classification of comparison methods.
In contrast to [8], [11], and [12], we focus on the statements
that can be made on the basis of the information provided
by quality measures. Is it, for instance, possible to conclude

from the quality “measurements” that an approximationis
undoubtedly better than approximation in the sense that

, loosely speaking, entirely dominates? This is a crucial
issue in any comparative study, and implicitly most papers in
this area rely on the assumption that this property is satisfied
for the measures used. To investigate quality measures from
this perspective, a formal framework will be introduced that
substantially goes beyond Hansen and Jaszkiewicz’s approach,
as well as that of Knowles and Corne; e.g., it will enable us
to consider combinations of quality measures and to prove
theoretical limitations of unary quality measures, both issues
not addressed in [8], [11], and [12]. In detail, we will show that:

• there exists no unary quality measure that is able to indi-
catewhetheran approximation is better than an approx-
imation ;

• the above statement even holds if we consider a finite com-
bination of unary measures;

• most quality measures that have been proposed to indicate
that is better than at best allow to infer that is not
worse than , i.e., is better than or incomparable to;

• unary measures being able to detectthat is better than
exist, but their use is in general restricted;

• binary quality measures overcome the limitations of unary
measures and, if properly designed, are capable of indi-
catingwhether is better than .

Furthermore, we will review existing quality measures in light
of this framework and discuss them from a practical point of
view also. Note that we focus on the comparison of approxima-
tion sets rather than on algorithms, i.e., we assume that for each
multiobjective EA only one run is performed. In the case of mul-
tiple runs, the distribution of the indicator values would have to
be considered instead of the values themselves; this important
issue will not be addressed in the present paper.

II. THEORETICAL FRAMEWORK

Before analyzing and classifying quality measures, we must
clarify the concepts we will be dealing with: what is the outcome
of a multiobjective optimizer, when is an outcome considered
to be better than another, what is a quality measure, what is a
comparison method, etc.? These terms will be formally defined
in this section.

A. Approximation Sets

The scenario considered in this paper involves an arbitrary
optimization problem with objectives , which
are, without loss of generality, all to be minimized and all
equally important, i.e., no additional knowledge about the
problem is available. The only assumption we make is that a
solution is preferable to another solution if dominates

. Furthermore, for the purpose of this paper it is sufficient
to deal with the objective vector corresponding to a
particular solution in decision space. Therefore, we will
use the aforementioned concepts, such as Pareto dominance,
Pareto-optimal set, and approximation set solely in terms of the
objective space in the following. For reasons of consistency and
simplicity, we will also assume that for each objective vector
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Fig. 2. Examples of dominance relations on objective vectors. Assuming that
two objectives are to be minimized, it holds thataaa � bbb, aaa � ccc, aaa � ddd, bbb � ddd,
ccc � ddd, aaa �� ddd, aaa � aaa, aaa � bbb, aaa � ccc, aaa � ddd, bbb � bbb, bbb � ddd, ccc � ccc, ccc � ddd,
ddd � ddd, andbbb k ccc.

, there is a decision vector ,
with .

Analogously to solutions, we say an objective vectordom-
inates another objective vector if is not greater than in
all componentsandhas a smaller value in at least one compo-
nent. An objective vector is denoted as Pareto-optimal if it is not
dominated by any other objective vector, and the entirety of all
Pareto-optimal objective vectors forms the Pareto-optimal set
in objective space. Fig. 2 visualizes the concept of Pareto domi-
nance and also gives some examples for other common relations
on pairs of objective vectors. Table I comprises a summary of the
relations used in this paper. Note that there exists a natural or-
dering of these relations as .
In addition, note that if is not incomparable to , then either

or , i.e., .
The vast majority of papers in the area of evolutionary multi-

objective optimization is concerned with the problem of how to
identify the Pareto-optimal solutions or, if this is infeasible, to
generate good approximations of them. Taking this as the basis
of our study, we here consider the outcome of a multiobjective
EA (or other heuristic) as a set of incomparable solutions, which
will be denoted as approximation set [8]. In terms of the objec-
tive space, this can be formalized as follows.

Definition 1 (Approximation Set):Let be a set of ob-
jective vectors. is called anapproximation setif any element
of does not weakly dominate any other objective vector in.
The set of all approximation sets is denoted as.

The motivation behind this definition is that all solutions
dominated by any other solution outputted by the optimization
algorithm are of no interest, and therefore can be discarded. In
objective space, this means we can neglect dominated objective
vectors, which will simplify the considerations in the following
sections.

Note that the above definition does not comprise any notion
of quality. We are certainly not interested inanyapproximation
set, but we want the EA to generate agoodapproximation set.
The ultimate goal is to identify the Pareto-optimal set. This aim,
however, is usually not achievable. Moreover, it is impossible
to exactly describe what a good approximation is in terms of a
number of criteria such as closeness to the Pareto-optimal set,
diversity, etc.—this will be shown in Section III-A. However,
we can make statements about the quality of approximation sets
in comparison to other approximation sets.

Consider, e.g., the outcomes of three hypothetical algorithms
as depicted in Fig. 3. Solely on the basis of Pareto dominance,
one can state that and both dominate as any objec-
tive vector in is dominated by at least one vector in and

. Furthermore, can be considered better than as it con-
tains all objective vectors in and another vector not included
in , although this statement is weaker than the previous one.
Accordingly, we will distinguish four relations in this paper as
defined in Table I: strictly dominates ( ), dom-
inates ( ), is better than ( ), and weakly
dominates ( ). Note that there is a natural ordering
again among the relations as

.
Weak dominance ( ) means that any objective vector

in is weakly dominated by a vector in. However, this does
not rule out equality, because for all approximation sets

. In this case, one cannot say thatis better than . In-
stead, the relation can be used. It requires that an approxima-
tion set is at least as good as another approximation set ( ),
while the latter is not as good as the former ( ), roughly
speaking. We can also conclude from the definition of the rela-
tion that . In other words, if
weakly dominates , then either is better than or they are
equal.

In the example, is better than and , and is better
than . This definition of superiority is the one implicitly used
in most papers in the field. The next level of superiority, the
relation, is a straightforward extension of Pareto dominance to
approximation sets. It does not allow that two objective vectors
in and are equal, and therefore is stricter than what we
usually require. As mentioned above, and dominate ,
but does not dominate . Strict dominance stands for the
highest level of superiority and means an approximation set is
superior to another approximation set in the sense that for any
objective vector in the latter there exists a vector in the former
that is better in all objectives. In Fig. 3, strictly dominates

, but does not as the objective vector (10, 4) is not strictly
dominated by any objective vector in .

These relations (cf. Table I) and their ordering can also be
visualized using a diagram as depicted in Fig. 4. Each pair

can be associated uniquely to one of the regions
shown.

B. Comparison Methods

Quality measures have been introduced to compare the
outcomes of multiobjective optimizers in a quantitative manner.
Certainly, the simplest comparison method would be to check
whether an outcome is better than another with respect to the
three dominance relations, , and . We have demon-
strated this in the context of the discussion of Fig. 3. The
reason, however, why quality measures have been used is to be
able to make more precise statements in addition to that, which
are inevitably based on certain assumptions about the decision
maker’s preferences:

• If one algorithm is better than another, can we express how
much better it is?

• If no algorithm can be said to be better than the other,
are there certain aspects in which respect we can say the
former is better than the latter?

Hence, the key question when designing quality measures is
how to best summarize approximation sets by means of a few
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TABLE I
RELATIONS ON OBJECTIVEVECTORS ANDAPPROXIMATION SETSCONSIDERED INTHIS PAPER. THE RELATIONS�,��, , AND � ARE DEFINED ACCORDINGLY,

E.G., zzz � zzz IS EQUIVALENT TO zzz � zzz AND A B IS DEFINED ASB A

Fig. 3. Outcomes of three hypothetical algorithms for a 2-D minimization
problem. The corresponding approximation sets are denoted asA , A , and
A ; the Pareto-optimal setP comprises three objective vectors. BetweenA ,
A , andA , the following dominance relations hold:A � A , A � A ,
A �� A , A � A , A � A , A � A , A � A , A � A ,
A � A , A A , A A , andA A .

Fig. 4. Partitioning of the set of ordered pairs(A; B) 2 
 of approximation
sets into (overlapping) subsets induced by the different dominance relations;
each subset labeled with a certain relationcontains those pairs(A; B) for
whichA B. Note that the set of all pairs(A; B) with A � B is the union
of those withA = B andA B.

characteristic numbers—similarly to statistics where the mean,
the standard deviation, etc. are used to describe a probability
distribution in a compact way. It is unavoidable to lose informa-
tion by such a reduction, and the crucial point is not to lose the
information one is interested in.

There are many examples of quality measures in the litera-
ture. Some aim at measuring the distance of an approximation
set to the Pareto-optimal set: Van Veldhuizen [13], e.g., calcu-
lated for each solution in the approximation set under consider-
ation the Euclidean distance to the closest Pareto-optimal objec-
tive vector and then took the average over all of these distances.
Other measures try to capture the diversity of an approximation
set, e.g., the chi-square-like deviation measure used by Srinivas

and Deb [14]. A further example is the hypervolume measure,
which considers the volume of the objective space dominated
by an approximation set [7]. In these three cases, an approxi-
mation set is assigned a real number which is meant to reflect
(certain aspects of) the quality of an approximation set. Alter-
natively, one can assign numbers to pairs of approximation sets.
Zitzler and Thiele [7], e.g., introduced the coverage function
which gives for a pair of approximation sets the fraction
of solutions in that are weakly dominated by one or more so-
lutions in .

In summary, we can state that quality measures map approx-
imation sets to the set of real numbers. The underlying idea is
to quantify quality differences between approximation sets by
applying common metrics (in the mathematical sense) to the re-
sulting real numbers. This observation enables us to formally
define what a quality measure is; however, we will use the term
“quality indicator” in the following as “measure” is often used
with different meanings.

Definition 2 (Quality Indicator): An -ary quality indi-
cator is a function : , which assigns each vector

of approximation sets a real value
.

The measures discussed above are examples for unary and
binary quality indicators; however, in principle, a quality indi-
cator can take an arbitrary number of arguments. Thereby, other
comparison methods that explicitly account for multiple runs
and involve statistical testing procedures [15], [16], [9] can also
be expressed within this framework. Furthermore, not a single
indicator but rather a combination of different quality indica-
tors is often used in order to assess approximation sets. Van
Veldhuizen and Lamont [2], for instance, applied a combina-
tion of three indicators, where
denotes the average distance of objective vectors into the
Pareto-optimal set, measures the variance of distances
between neighboring objective vectors in, and
gives the number of elements in. Accordingly, the combina-
tion (or quality indicator vector) can be regarded as a function
that assigns each approximation set a triple of real numbers.

Quality indicators, though, need interpretation. In particular,
we would like to formally describe statements such as “if and
only if , then all objective vectors in have zero
distance to the Pareto-optimal set, and therefore
and also for any approximation set .” To this
end, we introduce two concepts. An interpretation function
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Fig. 5. Illustration of the concept of a comparison method for (a) a single
unary quality indicator, (b) a single binary quality indicator, and (c) a
combination of two unary quality indicators. In cases (a) and (b), first the
indicatorI is applied to the two approximation setsA; B. The resulting two
real values are passed to the interpretation functionE, which defines the
outcome of the comparison. In case (c), each of the two indicators is applied to
A andB, and the resulting two indicator values are combined in a vectorIII(A)
andIII(B) respectively. Afterwards, the interpretation functionE decides the
outcome of the comparison on the basis of these two real vectors.

maps vectors of real numbers to Booleans. In the above ex-
ample, we would define

, i.e., is true if and only if
and at the same time . Such a combination of one
or more quality indicators and an interpretation function is
also called a comparison method . In the example, the com-
parison method based on and would be defined
as , and the conclusion
is that . In the
following, we will focus on comparison methods that: 1) con-
sider two approximation sets only and 2) use either only unary
or only binary indicators (cf. Fig. 5).

Definition 3 (Comparison Method):Let be two
approximation sets, a combination of
quality indicators, and : an inter-
pretation function which maps two real vectors of lengthto a
Boolean value. If all indicators in are unary, thecomparison
method defined by and is a function of the form

where for . If
contains only binary indicators, thecomparison method is
defined as

where
for .

Whenever we specify a particular comparison method
, we will write instead of

in order to improve readability. For
instance, means that
is true if and only if , given a combination of

unary indicators.

Definition 3 may appear overly formal for describing what
a comparison method basically is, and furthermore it does not
specify the actual conclusion (what does it mean if
is true?). As we will see in the following, however, it provides
a sound basis for studying the power of quality indicators—the
power of indicating relationships (better, incomparable, etc.) be-
tween approximation sets.

C. Linking Comparison Methods and Dominance Relations

The goal of a comparative study is to reveal differences in per-
formance between multiobjective optimizers, and the strongest
statement we can make in this context is that an algorithm out-
performs another one. Independently of what definition of “out-
performance” we use, it always should be compliant with the
most general notion in terms of the-relation, i.e., the state-
ment “algorithm outperforms algorithm” should also imply
that the outcome of the first method is better than the outcome

of the second method ( ).1

In this paper, we are interested in the question what con-
clusions can be drawn with respect to the dominance relations
listed in Table I on the basis of a comparison method . If

is a sufficient condition for, e.g., , then
this comparison method is capable of indicatingthat is better
than , i.e., . If is, in
addition, a necessary condition for , then the compar-
ison method even indicateswhether is better than , i.e.,

. In the following, we will use the terms
compatibility and completeness in order to characterize a com-
parison method in the above manner.

Definition 4 (Compatibility and Completeness):Let be an
arbitrary binary relation on approximation sets, cf. Table I. The
comparison method is denoted as -compatibleif either
for any

or for any

The comparison method is denoted as -completeif either
for any

or for any

For instance, suppose we have a comparison method that is
-completebut not compatible with respect to therelation.

If we use this comparison method to compare two setsand
with , i.e., is better than , than our comparison

method indicates that correctly. However, there are also sets
and with , i.e., is not better than , for which the
comparison method returns true. A comparison method that is
complete with regard to any relation is the one that always yields

1Recall that we assume that only a single optimization run is performed per
algorithm.
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true; it is useless, though, as it does not provide any compati-
bility.

On the other hand, if we have a comparison method that is
-compatible, then the above situation is safe: whenever our

comparison method yields true, we can be sure thatis better
than . However, we may miss opportunities, if the comparison
method is not -complete. In particular, there may be sets
and where is better than , but our comparison method
returns false. A comparison method that always yields false is
compatible and not complete regarding any relation.

To further illustrate this terminology, let us go back to the
example depicted in Fig. 3 and consider the following binary
indicator , which is inspired by concepts presented in [17].

Definition 5 (Binary -Indicator): Suppose, without
loss of generality, a minimization problem with pos-
itive objectives, i.e., . An objective vector

is said to -dominate an-
other objective vector , written as

, if and only if

for a given . We define thebinary -indicator as

for any two approximation sets .2

Loosely speaking, a vector is said to -dominate another
vector , if we can multiply each objective value in by a
factor of and the resulting objective vector is still weakly domi-
nated by . Therefore, implies that there exists
such that -dominates . Accordingly, the -indicator gives
the factor by which an approximation set is worse than another
with respect to all objectives, or to be more precise:
equals the minimum factor such that any objective vector in

is -dominated by at least one objective vector in. In the
single-objective case, is simply the ratio between the
two objective values represented byand .

In practice, the binary-indicator can be calculated
in time as follows:

or equivalently

For instance, , , and
in our previous example (cf. Fig. 6). The com-

plete table for all indicators is given in Table II.

2In the same manner, an additive�-indicatorI can be defined

I (A; B) = inf f8 zzz 2 B 9zzz 2 A: zzz � zzz g

wherezzz � zzz if and only if

8 1 � i � n: z � �+ z :

Fig. 6. The dark-shaded area depicts the subspace that is�-dominated by the
solutions inA for � = 9=10; the medium-shaded area represents the subspace
weakly dominated byA (equivalent to� = 1). The light-shaded area refers
to the subspace�-dominated by the solutions inA for � = 4. Note that the
areas are overlapping, i.e., the medium-shaded area, includes the dark-shaded
one, and the light-shaded area includes both of the other areas.

TABLE II
THE BINARY �-INDICATOR VALUES I (A; B) FOR ALL COMBINATIONS OF THE

SETSA1, A2, A3 AND P AS GIVEN IN FIG. 6

Fig. 7. The shaded area stands for those ordered pairs(A; B) for which
I (B; A) > 1 (left) or I (A; B) � 1 ^ I (B; A) > 1 (right), respectively.
Note that the right comparison method is both-compatible and -complete.

What comparison methods can be constructed using
the -indicator? Consider, e.g., the interpretation function

. The corresponding comparison method
is -complete as implies that .

On the other hand, is not -compatible as also
implies that . This is visualized in Fig. 7, where
we see on the left-hand side the area for which .
It becomes obvious that the indicator value is greater than one
even if the two sets are incomparable.

If we choose a slightly modified interpretation function
, then we obtain a comparison

method that is both - and -complete. The differences
between the two comparison methods are graphically depicted
in Fig. 7. On the right-hand side, we see that the new comparison
method exactly characterizes all pairs for which is
better than , i.e., .

In the remainder of this paper, we will theoretically study and
classify quality indicators using the above framework. Given a
particular quality indicator (or a combination of several indica-
tors), we will investigate whether there exists an interpretation
function such that the resulting comparison method is compat-
ible and in addition complete with respect to the various dom-
inance relations. That is, we determine how powerful existing
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quality indicators are in terms of their capability of indicating
thator whether , , , etc. The next section is
devoted to unary quality indicators, while binary indicators will
be discussed in Section IV.

III. COMPARISONMETHODSBASED ON UNARY QUALITY

INDICATORS

Unary quality indicators are most commonly used in the liter-
ature; what makes them attractive is their capability of assigning
quality values to an approximation set independent of other sets
under consideration. They have limitations, though, and there
are differences in the power of existing indicators as will be
shown in the following.

A. Limitations

Naturally, many studies have attempted to capture the multi-
objective nature of approximation sets by deriving distinct indi-
cators for the distance to the Pareto-optimal set and the diver-
sity within the approximation set. Therefore, the question arises
whether in principle there exists such a combination of, e.g.,
two indicators—one for distance, one for diversity—such that
we can detectwhetheran approximation set is better than an-
other. Such a combination of indicators, applicable to any type
of problem, would be ideal because then any approximation set
could be characterized by two real numbers that reflect the dif-
ferent aspects of the overall quality. The variety among the in-
dicators proposed suggests that this goal is, at least, difficult to
achieve. The following theorem shows that, in general, it cannot
be achieved.

Theorem 1: Suppose an optimization problem with
objectives, where the objective space is . Then, there
exists no comparison method based on a finite combi-
nation of unary quality indicators that is -compatible and

-complete at the same time, i.e,

for any approximation sets .
That is, for any combination of a finite number of unary

quality indicators, we cannot find an interpretation function
such that the corresponding comparison method is-compat-
ible and -complete. Or in other words: the number of criteria
that determine what a good approximation set is is infinite.

We only sketch the proof here, the details can be found in
the Appendix. First, we need the following fundamental results
from set theory [18]:

• , , and any open interval in resp. hypercube
in have the same cardinality, denoted as,

i.e., there is a bijection from any of these sets to any other;
• if a set has cardinality , then the cardinality of the

power set of is , i.e., there is no injection from
to any set of cardinality .

As we consider the most general case where , we can
construct a set (cf. Fig. 8) such that any two points contained
are incomparable to each other. Accordingly, any subsetof
is an approximation set and the power set of, the cardinality of
which is , is exactly the set of all approximation sets .
We will then show that any two approximation sets

Fig. 8. Illustration of the construction used in Theorem 1 for a 2-D
minimization problem. We consider an open rectangle(a; b) and define
an open lineS within. For S holds that any two objective vectors contained
are incomparable to each other, and therefore any subsetA � S is an
approximation set.

with must differ in at least one of theindicator values.
Therefore, an injection from a set of cardinality to is
required, which finally leads to a contradiction.

Note that Theorem 1 also holds: 1) if we only assume that
contains an open hypercube in for which has the

desired property and 2) if we consider any other relation from
Table I (for and it follows directly from Theorem 1, for
and the proof has to be slightly modified).

Given this result, one may ask under which conditions the
construction of such a comparison method is possible. For in-
stance, such a comparison method exists if we allow an infinite
number of indicators. The empirical attainment function [9],
when applied to single approximation sets, can be understood
as a combination of unary indicators, where denotes the
cardinality of . If , then this combination comprises
an infinite number of unary indicators. On its basis, a-com-
patible and -complete comparison method can be constructed.

The situation also changes, if we require that each approxi-
mation set contains at maximumobjective vectors.

Corollary 1: Let . It exists a unary indicator and
an interpretation function such that

for any , with .
Proof: Without loss of generality, we restrict ourselves to

in the proof. The indicator is constructed as
follows:

where denotes theth digit after the decimal point of theth
element in . If contains less thanelements, the first element
is duplicated as many times as necessary. Accordingly, there is
an injective function that maps each real number in (0, 1) to
an approximation set. If we define as

, the corresponding comparison method has the
desired properties.

The corollary, however, is rather of theoretical than of prac-
tical use. The indicator constructed in the proof is able to in-
dicatewhether is better than , but it does not express how
much better it is—this is one of the motives for using quality
indicators. What we actually want is to apply a metric to the in-
dicator values. Therefore, a reasonable requirement for a useful
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combination of indicators may be that ifis better than or equal
to , then is at least as good as with respect to all indi-
cators, i.e.,

That this condition holds is an implicit assumption made in
many studies. If we now restrict the size of the approximation
sets to and assume an indicator combination with the above
property, can we then detectwhether is better than ? To an-
swer this question, we will investigate a slightly reformulated
statement, namely

as this is equivalent to

Furthermore, we will only consider the simplest case where
, i.e., each approximation set consists of a single objec-

tive vector.
Theorem 2: Suppose an optimization problem with

objectives where the objective space is . Let
be a combination of unary quality indicators

and an interpreta-
tion function such that

for any pair of objective vectors . Then, the number
of indicators is greater than or equal to the number of objectives,
i.e., .

Proof: See the Appendix.
This theorem is a formalization of what is intuitively clear: we

cannot reduce the dimensionality of the objective space without
losing information. We need at least as many indicators as ob-
jectives to be able to detectwhetheran objective vector weakly
dominates or dominates another objective vector. As a conse-
quence, a fixed number of unary indicators is not sufficient for
problems of arbitrary dimensionality even if we consider sets
containing a single objective vector only.

In summary, we can state that the power of unary quality
indicators is restricted. Theorem 1 proves that there does not
exist any comparison method based on unary indicators that is

-compatible and -complete at the same time. This rules out
also other combinations, Table III shows which. It reveals that
the best we can achieve is either -compatibility without any
completeness, or -compatibility in combination with -com-
pleteness. That means we either can make strong statements (“
strongly dominates ”) for only a few pairs ; or we can
make weaker statements (“is not worse than ,” i.e.,
or ) for all pairs .

B. Classification

We now will review existing unary quality indicators ac-
cording to the inferential power of the comparison methods that
can be constructed on their basis:-compatible, -compatible,
and not compatible with any relation listed in Table III. Table IV
provides an overview of the various indicators discussed here.
In this context, we would also like to point out the relationships

TABLE III
OVERVIEW OF POSSIBLECOMPATIBILITY /COMPLETENESSCOMBINATIONS

WITH UNARY QUALITY INDICATORS. A MINUS MEANS THERE IS NO

COMPARISON METHODC THAT IS COMPATIBLE REGARDING THE

ROW-RELATION AND COMPLETEREGARDING THECOLUMN-RELATION. A PLUS

INDICATES THAT SUCH A COMPARISON METHOD IS KNOWN, WHILE A

QUESTION MARK STANDS FOR A COMBINATION FOR WHICH IT IS UNCLEAR

WHETHER A CORRESPONDINGCOMPARISONMETHOD EXISTS

between the dominance relations, e.g., -compatibility
implies -compatibility, -compatibility implies -com-
patibility, and -completeness implies -completeness.
Moreover, note that in the following, we will not consider the
case of identical approximation sets as an equality
check can be easily incorporated into any comparison method.
Therefore, in Table IV, the relations and are not contained.

1) -Compatibility: The use of -compatible comparison
methods based on unary indicators is restricted according to
Theorem 2: in order to detect dominance between objective
vectors, at least as many indicators as objectives are required.
Hence, it is not surprising that, to the best of our knowledge, no

-compatible comparison methods have been proposed in the
literature. Their design, though, is possible:3

• Suppose a minimization problem and let

We assume that is bounded, i.e., and
always exist. As illustrated in Fig. 9, the two indi-
cator values characterize a hypercube that contains
all objective vectors in . If we define the indicator

and the interpretation function
as , then the comparison
method is -compatible.

• Suppose a minimization problem and let

for and

if contains two or more elements
else.

The idea behind these indicators is similar to the above
example. We consider the smallest hyperrectangle that en-
tirely encloses . This hyperrectangle comprises exactly
one point that is weakly dominated by all members in

; in the case of a two-dimensional (2-D) minimization
problem, it is the upper right corner of the enclosing rec-
tangle (cf. Fig. 9). We see that are the coordi-
nates of this point . serves to distinguish between

3Note that there exists a trivial case: the comparison method that always yields
false.
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TABLE IV
OVERVIEW OF UNARY INDICATORS. EACH ENTRY CORRESPONDS TO ASPECIFICCOMPARISONMETHOD DEFINED BY THE INDICATOR AND THE INTERPRETATION

FUNCTION IN THAT ROW. WITH RESPECT TOCOMPATIBILITY AND COMPLETENESS, NOT ALL RELATIONS ARE LISTED BUT ONLY THE STRONGEST AS,
E.G., ��-COMPATIBILITY IMPLIES -COMPATIBILITY (CF. SECTION III-B)

Fig. 9. Two indicators capable of indicatingthatA B for someA; B 2 
.
On the left hand side, it is depicted how theIII indicator defines a hypercube
around an approximation setA, whereI (A) = a and I (A) = b.
The right picture is related to theIII indicator: for any objective vector in the
shaded area we can detect that it is dominated by the approximation setA. Here,
I (A) = c, I (A) = d, andI (A) = 0.

single objective vectors and larger approximation sets. Let
and define the interpretation func-

tion as : .
Then, the comparison method is -compatible;
it detects dominance between an approximation set and
those objective vectors that are dominated by all members
of this approximation set.

Note that both comparison methods are even-compatible,
but neither is complete with regard to any dominance relation.
This property is visualized in Fig. 10.

Moreover, some unary indicators can also be used to design a
-compatible comparison method if the Pareto-optimal setis

known. Consider, e.g., the following unary-indicator that
is based on the binary-indicator from Definition 5:

Fig. 10. The shaded area stands for those ordered pairs(A; B) for which
a comparison methodC yields true. The left-hand side shows a possible
pattern, if the comparison method is-compatible, but not -complete. The
right hand side represents the hypervolume comparison methodC with
E := (I (A) > I (B)) that is both6�-compatible and -complete.

Obviously, implies . Thus, in combination
with the interpretation function

a comparison method can be defined that is-compatible
and detectsthat is better than for all pairs with

and . The same construction can be made for
some other indicators, e.g., the hypervolume indicator, as well.
Nevertheless, these comparison methods are only applicable if
some of the algorithms under consideration can actually gen-
erate the Pareto-optimal set.

2) -Compatibility: Consider the above unary-indicator
. For any pair , it holds

and (which follows from the latter)

Therefore, the comparison method with
is -compatible and -complete, but

neither - nor -complete. That is whenever , we
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Fig. 11. Example of two incomparable setsA and B. The hypervolume
comparison method that is6�-compatible and -complete yields true as
I (A) > I (B).

will be able to state that is not worse than . On the other
hand, there are cases for which this conclusion cannot
be drawn, although is actually not worse than . The same
holds for the two indicators proposed by [19] and [20]. We will
not discuss these in detail and only remark that the following
example can be used to show that both indicators in combina-
tion with the interpretation function are
not -complete (and -complete): the Pareto-optimal set is

, and and .
The hypervolume indicator [7], [21] is the only unary in-

dicator we are aware of that is capable of detecting thatis not
worse than for all pairs . It gives the hypervolume
of that portion of the objective space that is weakly dominated
by an approximation set .4 We notice that from fol-
lows that ; the reason is that must contain
at least one objective vector that is not weakly dominated by

, thus, a certain portion of the objective space is dominated
by but not by . This observation implies both-compati-
bility and -completeness. If we also consider the case ,
this method is even -compatible (cf. Fig. 10). However, if
is incomparable to , then may also yield true as shown
in Fig. 11. Nevertheless, according to Theorem 1 and Table III

-compatibility is the best we can achieve for a-complete
comparison method based on unary quality indicators.

Van Veldhuizen [13] suggested an indicator, the error ratio
, on the basis of which a -compatible (but not -compat-

ible) comparison method can be defined. gives the ratio
of Pareto-optimal objective vectors to all objective vectors in the
approximation set . Obviously, if , i.e., contains
at least one Pareto-optimal objective vector, then there exists no

with . On the other hand, if consist of only a
single Pareto-optimal objective vector, then
for all ; if contains not only Pareto-optimal objective
vectors, then . Therefore, with

is not -compatible. However,
if we consider just the total number (rather than the ratio) of
Pareto-optimal objective vectors in the approximation set, we
obtain -compatibility. This also holds for the indicator used in

4Note thatZ has to be bounded, i.e., there must exist a hypercube inIR that
enclosesZ. If this requirement is not fulfilled, it can be easily achieved by an
appropriate transformation.

[22], which gives the ratio of the number of Pareto-optimal ob-
jective vectors in to the number of all Pareto-optimal objective
vectors. Nevertheless, the power of these comparison methods
is limited because none of them is complete with respect to any
dominance relation.

3) Incompatibility: Section III-A has revealed the difficul-
ties when trying to separate the overall quality of approximation
sets into distinct aspects. Nevertheless, it would be desirable if
we could look at certain criteria such as diversity separately, and
accordingly several authors suggested formalizations of specific
aspects by means of unary indicators. However, we have to be
aware that often these indicators doin generalneither indicate
that nor .

One class of indicators that does not allow any conclusions
to be drawn regarding the dominance relationship between ap-
proximation sets is represented by the various diversity indica-
tors [14], [21], [23]–[26]. If we consider a pair with

, the indicator value of can, in general, be less or
greater than or even equal to the value assigned to(for the
diversity indicators referenced above). Therefore, the compar-
ison methods based on these indicators are neither compatible
nor complete with respect to any dominance relation or comple-
ment of it.

The same holds for the three indicators proposed in [13]:
overall nondominated vector generation , generational
distance , and maximum Pareto front error . The first
just gives the number of elements in the approximation set, and
it is obvious that it does not provide sufficient information to
conclude , , etc. Why this also applies to the
other two, both distance indicators, will only be sketched here.
Assume a 2-D minimization problem for which the Pareto-op-
timal set consists of the two objective vectors (1, 0) and (0,
10). Now, consider the three sets , ,
and . For both distance indicators holds

, but , provided that Euclidean
distance is considered. Thus, we cannot conclude whether one
set is better or worse than another by just looking at the order
of the indicator values. A similar argument as for the genera-
tional distance applies to the coverage error indicator presented
in [24]; the only difference is that the coverage error denotes
the minimum distance to the Pareto-optimal set instead of the
average distance.

Knowles and Corne [11], [12] have discussed the incompati-
bility of the , , , and indicators, though from
a different perspective, in more depth, and the interested reader
is referred to [11] for a more detailed discussion of this topic.

Finally, one can ask whether it is possible to combine several
indicators for which no -compatible comparison method ex-
ists in such a way that the resulting indicator vector allows to
detect that is not worse than . Van Veldhuizen and Lamont
[2], for instance, used generational distance and overall non-
dominated vector generation in conjunction with the diversity
indicator of [23], while Debet al.[6] applied a similar combina-
tion of diversity and distance indicators. Other examples can be
found in, e.g., [27] and [24]. As in all of these cases, counterex-
amples can be constructed that show the corresponding com-
parison methods to be not-compatible, the above question re-
mains open and is not investigated in more depth here.
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IV. COMPARISONMETHODSBASED ON BINARY QUALITY

INDICATORS

Binary quality indicators can be used to overcome the diffi-
culties with unary indicators. However, they also have a draw-
back: when we comparealgorithms using a single binary indi-
cator, we obtain distinct indicator values—in contrast
to the values in the case of a unary indicator. This renders the
analysis and the presentation of the results more difficult. Nev-
ertheless, Theorem 1 suggests that this is in the nature of multi-
objective optimization problems.

A. Limitations

In principle, there are no such theoretical limitations of binary
indicators as for unary indicators. For instance, the indicator

else

allows to construct compatible and complete comparison
methods with regard to any of the dominance relations. How-
ever, this usually does not hold for existing practically useful
binary indicators, in particular those that are, as Knowles and
Corne [12] denote it,symmetric,i.e.,
for a constant . Although, symmetric indicators are attractive
as only half the number of indicator values has to be considered
in comparison to a general binary indicator, their inferential
power is restricted as we will show in the following.

Without loss of generality, suppose that , i.e.,
; otherwise consider the transformation

. The question is whether we
can construct a -compatible and -complete comparison
method based on this indicator; according to the discussion in
Section III-A, we assume that .

Theorem 3: Let be a binary indicator with
for and an interpretation function

with . If the corresponding com-
parison method is -compatible and -complete, then

for all with or .
Proof: Let . From

, it follows that , and
therefore

. From the symmetry , it then
follows that is equivalent to .

A consequence of this theorem is that a symmetric binary
indicator, for which , can detect
whether is better than , but not whether , ,
or . On the other hand, it follows from
for a pair that cannot be -compatible, if it is

-complete. We will use this result in the following discussion
of existing binary indicators.

B. Classification

In contrast to unary indicators, only a few binary indicators
can be found in the literature. We will classify them according

to the criterion of whether a corresponding comparison method
exists that is -compatibleand -complete with regard to a
specific relation .

As mentioned in Section II-B, Zitzler and Thiele [7] sug-
gested the coverage indicator , where gives the
fraction of solutions in that are weakly dominated by at least
one solution in . is equivalent to (
weakly dominates ) and therefore comparison methods
compatible and complete with regard to the, , , and rela-
tions can be constructed. Furthermore, with

, we obtain a comparison method that
is -compatible and -complete.

Hansen and Jaszkiewicz [8] proposed three symmetric binary
indicators , , and that are based on a set of utility
functions. The utility functions can be used to formalize and
incorporate preference information; however, if no additional
knowledge is available, Hansen and Jaszkiewicz suggest using
a set of weighted Tchebycheff utility functions. In this case,
the resulting comparison methods are, in general,-complete
but not -compatible as Theorem 3 applies ( can be
greater or less than 0 if ). Accordingly, these indicators,
in general, do not allow construction of a comparison method
that is both compatible and complete with respect to any of the
relations in Table I.

In [21], a binary version of the hypervolume indicator
[7] was proposed; the same indicator was used in [10].

is defined as the hypervolume of the subspace that
is weakly dominated by but not by . From ,
it follows that , and therefore, as with the coverage
indicator, comparison methods compatible and com-
plete regarding the , , , and relations are possible.
However, there exists no -compatible and -complete or

-compatible and -complete comparison method solely
based on the binary hypervolume indicator.

Knowles and Corne [16] presented a comparison method
based on the study by Fonseca and Fleming [15]. Although
designed for the statistical analysis of multiple optimization
runs, the method can be formulated in terms of an-ary
indicator if only one run is performed per algorithm or the
algorithms are deterministic. Here, we restrict ourselves to the
case as all of the following statements also hold for

. A user-defined set of lines in the objective space, all of
them passing the origin and none of them perpendicular to any
of the axes, forms the scaffolding of Knowles and Corne’s ap-
proach. First, for each line, the intersections with the attainment
surfaces [15] defined by the approximation sets under consider-
ation are calculated. The intersections are then sorted according
to their distance to the origin, and the resulting order defines a
ranking of the approximation sets with respect to this line. If
only two approximation sets are considered, then
gives the fraction of the lines for which is ranked higher
than . Accordingly, the most significant outcome would be

and . However, this method
strongly depends on the choice of the lines, and certain parts
of the attainment surface are not sampled. Therefore, in the
above case either is better than or both approximation are
incomparable to each other. As a consequence, the comparison
method with
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TABLE V
OVERVIEW OF BINARY INDICATORS. A MINUS MEANS THAT IN GENERAL THERE IS NOCOMPARISONMETHODC BASED ON THEINDICATOR I IN THE

CORRESPONDING ROWTHAT IS COMPATIBLE AND COMPLETE REGARDING THE RELATION IN THE CORRESPONDINGCOLUMN. OTHERWISE, AN EXPRESSION IS

GIVEN THAT DESCRIBES ANAPPROPRIATEINTERPRETATIONFUNCTION E

is, in the general case, not-compatible; however, it is -com-
patible and -complete.

Finally, we have already shown in Section II-C that a-com-
patible and -complete comparison method exists for the-in-
dicator. The case is equivalent to and
the same statements as for the coverage and the binary hyper-
volume indicators hold. Furthermore, the comparison method

with is -compatible and
-complete.

Table V summarizes the results of this section. Note that it
only contains information about comparison methods that are
both compatible and complete with respect to the different dom-
inance relations.

V. DISCUSSION

A. Summary of Results

We have proposed a mathematical framework to study quality
assessment methods for multiobjective optimizers. Starting with
the assumption that the outcome of a multiobjective EA can
be represented by a set of incomparable objective vectors, a
so-called approximation set, we have introduced several domi-
nance relations on approximation sets. These relations represent
a formal description of what we intuitively understand by one
approximation set being better than another. The termquality
indicator has been used to capture the notion of a quality mea-
sure, and a comparison method has been defined as a combi-
nation of quality indicators and an interpretation function that
evaluates the indicator values. Furthermore, we have discussed
two properties of comparison methods, namely compatibility
and completeness, which characterize the relationship between
comparison methods and dominance relations. On the basis of
this framework, existing comparison methods have been ana-
lyzed and discussed. The key results are as follows.

• Unary quality indicators, i.e., quality measures that sum-
marize an approximation set in terms of a real number, are
in generalnot capable of indicatingwhetheran approxi-
mation set is better than another—also if several of them

are used. This even holds if we consider approximation
sets containing a single objective vector only.

• Existing unary indicators at best allow to inferthatan ap-
proximation set is not worse than another, e.g., the dis-
tance indicator by Czyzak and Jaszkiewicz [20], the hy-
pervolume indicator by Zitzler and Thiele [7], or the unary
-indicator presented in this paper. However, with many

unary indicators and also combinations of unary indica-
tors, no statement about the relation between the corre-
sponding approximation sets can be made. That is, al-
though an approximation set may be evaluated better
than an approximation set with respect to all of the in-
dicators, can actually be superior to with respect to
the dominance relations. This holds especially for the var-
ious diversity measures and also for some of the distance
indicators proposed in the literature.

• We have given two examples demonstrating that com-
parison methods based on unary indicators can be con-
structed, such that can be recognized as being better
than for some approximation sets . It has also been
shown that the practical use of this type of indicator is nat-
urally restricted.

• Binary indicators, which assign real numbers to ordered
pairs of approximation sets, in principle do not possess the
theoretical limitations of unary indicators. The binary-in-
dicator proposed in this paper, e.g., is capable of detecting
whetheran approximation set is better than another. How-
ever, not all existing binary indicators have this property.
Furthermore, it has to be mentioned that the greater infer-
ential power comes along with additional complexity: in
contrast to unary indicators, the number of indicator values
to be considered is not linear but quadratic in the number
of approximation sets.

B. Conclusions

The results of this paper have been obtained analytically, and
naturally, the question arises: how they translate into practice,
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i.e., what consequences do the theoretical considerations have
for the researcher who is carrying out a comparative study?

The choice of the quality indicator(s) strongly depends on the
type of statements we would like to make. Are we interested in
general statements that hold for many scenarios and are based on
as few assumptions as possible regarding the decision maker’s
preferences? Or do we consider a specific scenario where the
preferences of the decision maker are (partially) known, e.g., in
terms of a ranking of the objectives? Often, it is even desirable
to be able to draw both general and specific conclusions.

The most general statements possible are of the form “ap-
proximation set strictly dominates / dominates / is better than
/ weakly dominates approximation set,” which are only based
on the concept of Pareto dominance (cf. Table I). In this case,
the comparison method should be at least capable of detecting
whether is better than , i.e., it should be compatible and
complete with respect to as many of the dominance relations as
possible. Since this cannot be achieved by using a (finite) com-
bination of unary quality indicators, e.g., one for distance and
another for diversity, appropriate binary quality indicators are
needed. Among the ones discussed in this paper, the two binary
-indicators (Section II-C) and the coverage indicator [7] are

best suited as they provide compatibility and completeness to
most of the dominance relations.

In practice, though, we would like to make additional, more
precise statements—beyond the dominance relations. Ifis
better than , the question is how much better it is. If is in-
comparable to , it would be interesting to know whether there
are certain aspects in whichis better than . To answer these
questions, we ineluctably have to make assumptions about the
decision maker’s preferences, and the more assumptions are in-
corporated the more specific but also weaker the conclusions
will be in the sense that they only hold if these preferences apply.

Binary quality indicators are usually designed to formalize
broadly valid preferences, and in the ideal case an indicator
allows to make statements about both dominance relations
and preference-dependent performance differences. As to the
second aspect, the coverage indicator is only of limited use
because it does not say anything about how muchis better
than . In contrast, the binary -indicators and the binary
hypervolume indicator [21] are able to detect performance dif-
ferences, but the latter does not indicatewhether dominates
or even strictly dominates .

Unary quality indicators, e.g., the various diversity measures,
often represent problem-dependent knowledge. Nevertheless,
they can be useful to focus on specific aspects in order to design
and improve algorithms. We will not discuss the issue of how to
integrate preference information into the quality assessment in
detail here and refer to the work of Hansen and Jaszkiewicz [8]
instead. However, note that a comparison method, independent
of the type of indicators used, should be at least-compatible,
i.e., there is no pair of approximation setsand where the
comparison method says is preferred to , while actually
is better than ( ). If the comparison method is in addi-
tion -complete, we know that whenever then will
also be evaluated better than.

Finally, the above considerations concentrate on only one,
but essential criterion: the inferential power. Certainly, there are

many other aspects according to which comparison methods can
be investigated, e.g., the computational effort, the sensitivity to
scaling, the requirement to have knowledge about the Pareto-op-
timal set, etc. Several such aspects have been investigated in
[11] and [12]. Also, in light of these aspects, the binary-in-
dicator possesses several desirable features. It represents a nat-
ural extension to the evaluation of approximation schemes in
theoretical computer science [28] and gives the factor by which
an outcome is worse than another. Thus, it has a clear interpre-
tation—in contrast to, e.g., the coverage and the hypervolume
indicators. Furthermore, it is cheap to compute as opposed to
the hypervolume indicator, which is computationally expensive
[11].

In summary, for general statements, we recommend to use the
binary -indicator (multiplicative or additive), according to the
current status of knowledge. However, there may be particular
scenarios where this indicator is not appropriate. In addition,
more specific, usually problem-dependent indicators can be in-
cluded in order to exploit knowledge about the decision maker’s
preferences and to draw more precise conclusions.

C. Future Work

An important issue, which has not been addressed in this
paper, is the stochasticity of multiobjective EAs. Multiple op-
timization runs require the application of statistical tests, and
in principle there are two ways to incorporate these tests in a
comparison method: the statistical testing procedure can be in-
cluded in the indicator functions or in the interpretation func-
tion. Knowles and Corne’s approach [16] belongs to the first
category, while Van Veldhuizen and Lamont’s study [2] is an ex-
ample for the second category. The attainment function method
proposed by Grunert da Fonsecaet al. [9] can be expressed in
terms of an infinite number of indicators and therefore falls in
the second category. However, in contrast to [2] and [16], this
method is able to detectwhetheran approximation set is better
than another. Investigating, in more depth, how all of these ap-
proaches are related to each other is the subject of ongoing re-
search.

APPENDIX

Proof of Theorem 1:Let us suppose that such a comparison
method exists where is a combi-
nation of unary quality indicators and a corresponding in-
terpretation function . Furthermore, as-
sume, without loss of generality, that the first two objectives are
to be minimized (otherwise, the definition of the following set

has to be modified accordingly).
Choose with , and consider

; ,
. Obviously, for any , either

or , because implies . Furthermore,
let denote the set of approximations sets with

.
As and any subset of an approximation set is again an

approximation set, is identical to the power set of .
In addition, there is an injection from the open interval
to with
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, it follows that the cardinality of is at least . As a
consequence, the cardinality of is at least .

Now, we will use Lemma 1 (see below): it shows that for any
with the quality indicator values differ, i.e.,

for at least one indicator , . There-
fore, there must be an injection from to , the codomain
of . This means there is an injection from a set of cardinality

(or greater) to a set of cardinality . From this absurdity,
it follows that such a comparison method cannot exist.

Lemma 1: Let ; ,
be an open hypercube in with , ,

and . Furthermore, assume there exists a combination of
unary quality indicators and an interpreta-
tion function , such that for any approximation sets

Then, for all with , there is at least one quality
indicator with , such that .

Proof: Let be two arbitrary approximation sets
with . First, note that implies
is false (and vice versa) as implies . If or

, then for at least one , because
otherwise would
be false. If , there are two cases: 1) bothand contain
only a single objective vector or 2) either set consists of more
than one element.

Case 1) Choose with and (such an
objective vector exists as is an open hypercube
in ). Then and ,
and from the former follows is
true. Accordingly, for at least one

, because otherwise
would be true, which contradicts

.
Case 2) Assume, without loss of generality, thatcon-

tains more than one objective vector, and choose
with (such an element must exist

as ). Then, , which implies that
. Now suppose for

all ; it follows that
is true which is a contradiction to

.
In summary, all cases ( , , and ) imply that

for at least one .
Proof of Theorem 2:We will exploit the fact that in , the

number of disjoint open intervals ;
with is countable [18]. In general, this means that
contains only countably many disjoint open hyperrectangles

;
with . The basic idea

is that whenever fewer indicators than objectives are available,
uncountably many disjoint open hyperrectangles arise—a con-
tradiction. Furthermore, we will show a slightly modified state-
ment, which is more general: if contains an open hypercube

with such that for any

then .

Without loss of generality, assume a minimization problem in
the following. We will argue by induction.

Let with and consider
the incomparable objective vectors and

. If , then either
or vice versa; this leads to a contra-

diction to and .

Suppose , and that the statement
holds for . Choose with

, and consider the dimensional open
hypercube

; ,
for an arbitrary . First, we
will show that

for all . Assume

for any . If
, then

, which yields a contradiction. If
,

then for all
, because if .

Then, for any , it holds that

which contradicts the assumption that for any
dimensional open hypercube in , at

least indicators are necessary. Therefore,
.

Now, we consider the image of in indi-
cator space. The vectors
and determine an open
hyperrectangle

;
, , where

. has the
following properties:

1) Since was arbitrarily chosen within , there
are uncountably many disjoint open hyperrectangles of
dimensionality in the -dimensional indicator space.
This contradiction implies that .
2) is open in all dimensions as for all

: ;
;

3) contains an infinite number of elements.
4) for any : assume

; then
, which yields a contradiction as

.
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