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Performance Assessment of Multiobjective
Optimizers: An Analysis and Review

Eckart Zitzler Member, IEEELothar Thiele, Marco Laumanns, Carlos M. Fonseca, and Viviane Grunert da Fonseca

Abstract—An important issue in multiobjective optimization is black box
the quantitative comparison of the performance of different algo- ;
rithms. In the case of multiobjective evolutionary algorithms, the
outcome is usually an approximation of the Pareto-optimal set,
which is denoted as an approximation set, and therefore the ques-
tion arises of how to evaluate the quality of approximation sets. ) o o
Most popular are methods that assign each approximation set a Fig.1. Typical black box optimization problem where elements of the dECISIOI"!
vector of real numbers that reflect different aspects of the quality. SPace need to be determined such that the components of the corresponding
Sometimes, pairs of approximation sets are considered too. In this °P€ctive vector are optimal under the mappihg
study, we provide a rigorous analysis of the limitations underlying

this type of quality assessment. To this end, a mathematical frame- . 1 .
work is developed which allows to classify and discuss existing tech- if no component ok is larger than the corresponding compo-

niques. nent ofz2 and at least one component is smaller. Here, optimal
solutions, i.e., solutions not dominated by any other solution,
may be mapped to different objective vectors. In other words:
there may exist several optimal objective vectors representing
different tradeoffs between the objectives.

|. INTRODUCTION The set of optimal solutions in the decision spatis in gen-

HE MAIN subject of this paper can be best understood ﬁra_l d_eno_ted aPareto-optimal setWith many multiobjective

T considering a setting as depicted in Fig. 1. We assume tiR@{imization problems, knowledge about this set helps the de-
a solution to the optimization problem at hand can be describg§On maker in choosing the best compromise solution. For in-
in terms of adecision vectoin thedecision spacé. The func- Stance, when designing computer systems, engineers often per-
tion f: X — Z evaluates the quality of a specific solution byform & so—callgd design space explorathn to Iearn_more about
assigning it arobjective vectoin the objective space’. the Pareto-op_tlmal set. Thereby_, the des_lgn space is reduced to

Now, let us suppose that the objective space is a subset of #i@ Set of optimal trade-offs: a first step in selecting an appro-
real numbers, i.eZ C IR, and that the goal of the optimizationPriateé implementation. _
is to minimize the single objective. In such a single-objective However, generating the Pareto-optimal set can be compu-
optimization problem, a solutics! € X is better than another tat|0_nally expensive a_nd is oft_en !nfea5|ble, because the com-
solutionz? € X, if 2! < z>wherez! = f(z!) andz? = f(z?). plexity qf the un_derlylng appl!catlon prevents exact methods
Although several optimal solutions may exist in decision spadéom being applicable. Evolutionary algorithms (EAs) are an
they are all mapped to the same objective vector, i.e., there ex@fgrnative: they usually do not guarantee to identify optimal
only a single optimum in objective space. tradepffs but try to 'flnd' a good approximation, i.e., a set of

In the case of a vector-valued evaluation functiprwith solutions whose objective vectors are (hopefully) not too far
Z C R", wheren > 1, the situation of comparing two so-2Way fromth_e optimal objectiye vectors. \(arious mul_tiobjective
lutionsz' andz? is more complex. Following the well-known EAs are ava|la_ble, and certainly we are mterestgd in the tech-
concept of Pareto dominance, we can say #ialominateg>  hique that provides the best approximation for a given problem.

However, in order to reveal strengths and weaknesses of certain
approaches and to identify the most promising techniques, ex-
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by means of the objective function: the smaller (or larger) tHeom the quality “measurements” that an approximatidns
value, the better the solution. If we compare two solutions imdoubtedly better than approximatids in the sense that
the presence of multiple optimization criteria, the concept of, loosely speaking, entirely dominatés? This is a crucial
Pareto dominance can be used, although the possibility of tvésue in any comparative study, and implicitly most papers in
solutions being incomparable, i.e., neither dominates the othihis area rely on the assumption that this property is satisfied
complicates the situation. However, it gets even more complér the measures used. To investigate quality measures from
cated when we compare two sets of solutions because sdine perspective, a formal framework will be introduced that
solutions in either set may be dominated by solutions in teibstantially goes beyond Hansen and Jaszkiewicz’s approach,
other set, while others may be incomparable. Accordingly, as well as that of Knowles and Corne; e.g., it will enable us
is not clear what quality means with respect to approximatiots consider combinations of quality measures and to prove
of the Pareto-optimal set: closeness to the optimal solutionstireoretical limitations of unary quality measures, both issues
objective space, coverage of a wide range of diverse solutionsf addressed in [8], [11], and [12]. In detail, we will show that:

or other properties? It is difficult to define appropriate quality « there exists no unary quality measure that is able to indi-

measures for approximations of the Pareto-optimal set, and as a catewhetheran approximation! is better than an approx-
consequence graphical plots have been used to compare the out- imation B

comes of mUltiObjective EAs until I’ecently, as Van Veldhuizen the above statement even holds if we consider a finite com-

and Lamont point out [2]. _ bination of unary measures;

Progress, though, has been made, and several studies can be most quality measures that have been proposed to indicate
found in the literature that address the problem of comparing ap-  that A4 is better than3 at best allow to infer that is not
proximations of the Pareto-optimal set in a quantitative manner.  worse thanB, i.e., A is better than or incomparable 2

Most popular are unary quality measures, i.e., the measure as- ynary measures being able to detibeit A is better than
Signs each apprOXimation set a number that reflects a certain B exist, but their use is in genera| restricted;

quality aspect, and usually a combination of them is used, €., « binary quality measures overcome the limitations of unary
[2], [6]. Other methods are based on binary quality measures, measures and, if properly designed, are capable of indi-
which assign numbers to pairs of approximation sets, e.g., [7] catingwhetherA is better thanB.

and [8]. A third and conceptually different method is the attalri:urthermore, we will review existing quality measures in light

ment fgnction apprpach [9]' which con sistg Of. estimating thtﬁ this framework and discuss them from a practical point of
prob_ablllty of atFa'”'T‘g arbitrary 90?"5 n objectl\/_e space frorUiew also. Note that we focus on the comparison of approxima-
multiple approximation sets. Despite of this variety, it has ref,, sets rather than on algorithms, i.e., we assume that for each

lmalged uncrllearhup toan\r/]v h%W_ch different megzwez are ffiiltiobjective EA only one run is performed. In the case of mul-
ated to each other and what their advantages and disadvantaggs runs, the distribution of the indicator values would have to

are. Accordingly, there is no common agreement on which meg considered instead of the values themselves; this important

sure(s) should be use_d. . ! . issue will not be addressed in the present paper.
Recently, a few studies have been carried out to clarify this sit-

uation. Hansen and Jaszkiewicz [8] studied and proposed some
guality measures that allow to incorporate knowledge about the [I. THEORETICAL FRAMEWORK
decision maker’'s preferences. They first introduced three dif-

; C - Before analyzing and classifying quality measures, we must
ferent“outperformance"relatlons:formultlobjectlveopt|m|zer§:I yzing fying q y

) be better than another, what is a quality measure, what is a

S|dered_ was. wh(?‘never an approx’!matpn Is better than anot anarison method, etc.? These terms will be formally defined
according to an “outperformance” relation, does the comp this section

ison method also evaluate the former as being better (or at least

not worse) than the latter? More from a practical point of view, L

Knowleset al.[10] compared the information provided by dif—A' Approximation Sets

ferent assessment techniques on two database management aie scenario considered in this paper involves an arbitrary

plications. More recently, Knowles [11] and Knowles and Cornaptimization problem with objectivesfy, fo, ..., f., which

[12] discussed and contrasted several commonly used quadite, without loss of generality, all to be minimized and all

measures in light of Hansen and Jaszkiewicz’s approach, as vegjually important, i.e., no additional knowledge about the

as according to other criteria such as, e.g., sensitivity to scalipgoblem is available. The only assumption we make is that a

They showed that about one third of the investigated qualigplutionz! is preferable to another solutiar? if ' dominates

measures are not compliant with any of the “outperformance?. Furthermore, for the purpose of this paper it is sufficient

relations introduced by Hansen and Jaszkiewicz. to deal with the objective vectar € Z corresponding to a
This paper takes a different perspective that allows a magoarticular solution: € X in decision space. Therefore, we will

rigorous analysis and classification of comparison methodsse the aforementioned concepts, such as Pareto dominance,

In contrast to [8], [11], and [12], we focus on the statemenfareto-optimal set, and approximation set solely in terms of the

that can be made on the basis of the information providetjective space in the following. For reasons of consistency and

by quality measures. Is it, for instance, possible to concludenplicity, we will also assume that for each objective vector
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As. FurthermoreA; can be considered better thdn as it con-
tains all objective vectors id, and another vector not included

in As, although this statement is weaker than the previous one.
Accordingly, we will distinguish four relations in this paper as
defined in Table IA strictly dominates3 (A >> B), A dom-
inatesB (A > B), A is better thanB (A > B), and A weakly
dominatesB (A > B). Note that there is a natural ordering

Fig. 2. Examples of dominance relations on objective vectors. Assuming t@gam among the relationsas == B = A - B = A >
two objectives are to be minimized, it holds thak b,a > c,a > d,b > d, B A> B
c>d,a>~da>a,arbar>cardbr-bb>dcrccrd, = -

d > d,andb || c. Weak dominance4 > B) means that any objective vector
in B is weakly dominated by a vector in. However, this does

z = (21, 22, ..., zn) € Z, there is a decision vectar € X, not rule out equality, because = A for all approximation sets

with z = f(z) = (f1(z), f2(x), - .., ful(z)). A € Q. In this case, one cannot say thhis better than3. In-

Analogously to solutions, we say an objective veetodom-  stead, the relation can be used. It requires that an approxima-
inates another objective vectet if 2! is not greater tham? in  tion setis atleast as good as another approximationiset 3),
all componentsind has a smaller value in at least one compdwhile the latter is not as good as the formér ¢ A), roughly
nent. An objective vector is denoted as Pareto-optimal if it is ngpeaking. We can also conclude from the definition of the rela-
dominated by any other objective vector, and the entirety of &ipn > thatA = B = A > BV A = B. In other words, ifA
Pareto-optimal objective vectors forms the Pareto-optimal seeakly dominates3, then either is better thanB or they are
in objective space. Fig. 2 visualizes the concept of Pareto dor@fual.
nance and also gives some examples for other common relationk the exampleA; is better tham, and A3, and A, is better
on pairs of objective vectors. Table | comprises a summary of th&nA;. This definition of superiority is the one implicitly used
relations used in this paper. Note that there exists a natural igrmost papers in the field. The next level of superiority, the
dering of these relations a8 > 22 = z! = 22 = z! = 22, relation, is a straightforward extension of Pareto dominance to
In addition, note that i' is not incomparable te?, then either approximation sets. It does not allow that two objective vectors
b= 2%orzt <22 ie, 2t 22 = 2t = 22 A2t < 22 in A and B are equal, and therefore is stricter than what we

The vast majority of papers in the area of evolutionary multissually require. As mentioned abowvé, and A, dominateAs,
objective optimization is concerned with the problem of how tbut A; does not dominatel,. Strict dominance stands for the
identify the Pareto-optimal solutions or, if this is infeasible, tBighest level of superiority and means an approximation set is
generate good approximations of them. Taking this as the bagligerior to another approximation set in the sense that for any
of our study, we here consider the outcome of a multiobjecti@®jective vector in the latter there exists a vector in the former
EA (or other heuristic) as a set of incomparable solutions, whithat is better in all objectives. In Fig. 31, strictly dominates
will be denoted as approximation set [8]. In terms of the objeets, but A, does not as the objective vector (10, 4) is not strictly
tive space, this can be formalized as follows. dominated by any objective vector i,.

Definition 1 (Approximation Set)iLet A C Z be asetofob-  These relations (cf. Table I) and their ordering can also be
jective vectorsA is called arapproximation seif any element Visualized using a diagram as depicted in Fig. 4. Each pair
of A does not weakly dominate any other objective vectotin (A, B) € Q? can be associated uniquely to one of the regions
The set of all approximation sets is denotedlas shown.

The motivation behind this definition is that all solutions
dominated by any other solution outputted by the optimizatiq® Comparison Methods
algorithm are of no interest, and therefore can be discarded. In ) )
objective space, this means we can neglect dominated objectiv®uality measures have been introduced to compare the
vectors, which will simplify the considerations in the fo”OWingoutcomes of multiobjective optimizers in a quantitative manner.
sections. Certainly, the simplest comparison method would be to check

Note that the above definition does not comprise any notig¥1€ther an outcome is better than another with respect to the
of quality. We are certainly not interestedanyapproximation threéé dominance relatiorts, »-, and ~-. We have demon-
set, but we want the EA to generatga@odapproximation set. Strated this in the context of the discussion of Fig. 3. The
The ultimate goal is to identify the Pareto-optimal set. This airffason, however, why quality measures have been used is to be
however, is usually not achievable. Moreover, it is impossibfPle to make more precise statements in addition to that, which

to exactly describe what a good approximation is in terms of%€ inevitably based on certain assumptions about the decision

number of criteria such as closeness to the Pareto-optimal §&gker's preferences:

diversity, etc.—this will be shown in Section IlI-A. However, < If one algorithm is better than another, can we express how

we can make statements about the quality of approximation sets much better it is?

in comparison to other approximation sets. « If no algorithm can be said to be better than the other,
Consider, e.g., the outcomes of three hypothetical algorithms are there certain aspects in which respect we can say the

as depicted in Fig. 3. Solely on the basis of Pareto dominance, former is better than the latter?

one can state that; and A, both dominated; as any objec-  Hence, the key question when designing quality measures is

tive vector inAj3 is dominated by at least one vectordn and how to best summarize approximation sets by means of a few
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TABLE |
RELATIONS ON OBJECTIVE VECTORS ANDAPPROXIMATION SETS CONSIDERED INTHIS PAPER. THE RELATIONS <, <<, <, AND < ARE DEFINED ACCORDINGLY,
E.G, z! < 22 ISEQUIVALENT TO z2 = 2! AND A <1 B ISDEFINED ASB > A

relation I objective vectors i approximation sets
strictly dominates || 21 >> z2 | z! is better than z? in all objectives A>> B | every 2% € B is strictly dominated
by at least one 2! € A
dominates 2T > 22 | zT is not worse than 22 in all objectives A > B | every 2% € B is dominated by
and better in at least one objective at least one 2! € A
better AD> B | every 22 € B is weakly dominated by
at least one 2! € Aand A # B
weakly dominates 2T > 2% | 21 is not worse than 22 in all objectives A> B | every 27 € B is weakly dominated by
at least one 2! € A
incomparable 2t [ 22 neither z' weakly dominates z2 nor Al B neither A weakly dominates B nor
22 weakly dominates z! B weakly dominates A
LY o I and Deb [14]. A further example is the hypervolume measure,

which considers the volume of the objective space dominated
by an approximation set [7]. In these three cases, an approxi-
mation set is assigned a real number which is meant to reflect
(certain aspects of) the quality of an approximation set. Alter-
natively, one can assign numbers to pairs of approximation sets.
Zitzler and Thiele [7], e.g., introduced the coverage function
which gives for a paiA, B) of approximation sets the fraction
of solutions inB that are weakly dominated by one or more so-
1 lutions in A.

In summary, we can state that quality measures map approx-
Fig. 3. Outcomes of three hypothetical algorithms for a 2-D minimizatioimation sets to the set of real numbers. The underlying idea is
e o ot o Sxponi s s vesne: Sesucay, 10 duantiy qualiy diferences between approximation sets by
A, and As, the following dominance relations holdt, > As, 4, >~ A5, @PPlying common metrics (in the mathematical sense) to the re-
Ay == Az, Ar = AL AL = As AL = As Al = Al A = A, sulting real numbers. This observation enables us to formally

Az = As, A1 D> As, Ay D Ag, and A, > As. define what a quality measure is; however, we will use the term
“guality indicator” in the following as “measure” is often used
with different meanings.

Definition 2 (Quality Indicator): An m-ary quality indi-
cator [ is a functionl: 2™ — IR, which assigns each vector
(Ay, As, ..., A,,) of m approximation sets a real value
I(Ay, ..., Ap).

The measures discussed above are examples for unary and
binary quality indicators; however, in principle, a quality indi-
cator can take an arbitrary number of arguments. Thereby, other
comparison methods that explicitly account for multiple runs
Fig. 4. Partitioning of the set of ordered pair, B) € ©2* of approximation ~ and jnvolve statistical testing procedures [15], [16], [9] can also
sets into (overlappmg)_subsets |r_1duced_ by the _dlfferent dommance relat|oBs, . . .
each subset labeled with a certain relapercontains those pairsd, B) for D€ expressed within this framework. Furthermore, not a single
which A » B. Note that the set of all paisi, B) with 4 > B is the union indicator but rather a combination of different quality indica-
of those withA = B andA > B. tors is often used in order to assess approximation sets. Van

Veldhuizen and Lamont [2], for instance, applied a combina-
characteristic numbers—similarly to statistics where the medion I = (Igp, Is, Ionve) of three indicators, wherk;p(A)
the standard deviation, etc. are used to describe a probabitignotes the average distance of objective vectord o the
distribution in a compact way. It is unavoidable to lose informaRareto-optimal setls(A4) measures the variance of distances
tion by such a reduction, and the crucial point is not to lose tietween neighboring objective vectors 47 and Ionve(A)
information one is interested in. gives the number of elements ih Accordingly, the combina-

There are many examples of quality measures in the litetésn (or quality indicator vectorJ can be regarded as a function
ture. Some aim at measuring the distance of an approximatibiat assigns each approximation set a triple of real numbers.
set to the Pareto-optimal set: Van Veldhuizen [13], e.g., calcu-Quality indicators, though, need interpretation. In particular,
lated for each solution in the approximation set under considere would like to formally describe statements such as “if and
ation the Euclidean distance to the closest Pareto-optimal objenly if Icp(A) = 0, then all objective vectors id have zero
tive vector and then took the average over all of these distancéistance to the Pareto-optimal sBt and thereforeA C P
Other measures try to capture the diversity of an approximatiand alsoB % A for any approximation seB ¢ P.” To this
set, e.g., the chi-square-like deviation measure used by Srinieasl, we introduce two concepts. An interpretation function
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unary quality indicator, (b) a single binary quality indicator, and (c) a
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Definition 3 may appear overly formal for describing what
a comparison method basically is, and furthermore it does not
specify the actual conclusion (what does it mea®iifg (A, B)
is true?). As we will see in the following, however, it provides
a sound basis for studying the power of quality indicators—the
power of indicating relationships (better, incomparable, etc.) be-
tween approximation sets.

C. Linking Comparison Methods and Dominance Relations

The goal of a comparative study is to reveal differences in per-
formance between multiobjective optimizers, and the strongest
statement we can make in this context is that an algorithm out-
performs another one. Independently of what definition of “out-
performance” we use, it always should be compliant with the
most general notion in terms of the-relation, i.e., the state-
algorithma outperforms algorithnd” should also imply

combination of two unary quality indicators. In cases (a) and (b), first tH1at the outcomel of the first method is better than the outcome

indicator I is applied to the two approximation sets B. The resulting two

real values are passed to the interpretation funcfignwhich defines the
outcome of the comparison. In case (c), each of the two indicators is applied

A andB, and the resulting two indicator values are combined in a vegtd)

B of the second methodd(> B).
Jn this paper, we are interested in the question what con-
cﬁusions can be drawn with respect to the dominance relations

and I(B) respectively. Afterwards, the interpretation functiBhdecides the |isted in Table | on the basis of a comparison metigdg. If

outcome of the comparison on the basis of these two real vectors.

Cr. e(4, B) is a sufficient condition for, e.g4 > B, then
this comparison method is capable of indicatihgt A is better

maps vectors of real numbers to Booleans. In the above #an B, i.e.,Cr g(A, B) = A > B.If Cr g(A, B) is, in

ample, we would definé(Igp(A), Igp(B)) := (Igp(4) =
0A Igp(B) > 0), i.e,, E is true if and only ifIgp(4) = 0

addition, a necessary condition fdr > B, then the compar-
ison method even indicatashether A is better thanB, i.e.,

and at the same timk;p(B) > 0. Such a combination of one Cr, £(A, B) < A > B. Inthe following, we will use the terms

or more quality indicatorg and an interpretation functiofi is

compatibility and completeness in order to characterize a com-

also called a comparison meth6g . In the example, the com- parison method in the above manner.

parison method’y,,,, g based orlzp and E would be defined

Definition 4 (Compatibility and Completeness)et » be an

asCr.,, e(A, B) = E(Icn(A), Ign(B)), and the conclusion arbitrary binary relation on approximation sets, cf. Table I. The

is thatCy,,,, p(A, B) & AC PABZ PAB ¥ A lnthe

comparison methody, ¢ is denoted as-compatibleif either

following, we will focus on comparison methods that: 1) corfor any A, B € Q
sider two approximation sets only and 2) use either only unary

or only binary indicators (cf. Fig. 5).

Definition 3 (Comparison Method)Let A, B € € be two
approximation sets] = (Iy, Iy, ..., I;;) a combination o
quality indicators, and: R¥ x R* — {false, true} aninter-
pretation function which maps two real vectors of lengtto a
Boolean value. If all indicators il are unary, th&eomparison
methodCr, g defined byl and £ is a function of the form

Cr,e(A, B)=E((A), I(B))

whereI(A") = (I1(A"), Io(A"), ..., Ix(A"))for A" € Q. If I

contains only binary indicators, ttemparison methody, g is
defined as

Cr.6(A, B) = E(I(A, B), I(B, A))

wherel(A’, B') = (I,(A, B"), I,(A’, B'), ..., I,(A’, B"))
for A’, B’ € Q.

CI,E(A7 B) = Aw» B

§or foranyA, B € Q

OI,E(A7 B) = B» A.

The comparison methdd;, ¢ is denoted as--completef either
forany A, B € Q

Aw» B=> CI,E(A7 B)
orforanyA, B € Q
By A= CI_’E(A, B)

For instance, suppose we have a comparison method that is
>-completebut not compatible with respect to tire relation.
If we use this comparison method to compare two setnd
B with A > B, i.e., A is better than3, than our comparison

Whenever we specify a particular comparison methdgethod indicates that correctly. However, there are alsosets

Cr.p, we will write £ =
BE(---
instance,E := (I;(A) > I,(B)) means that’(I(A), I(B))

(expression) instead of

is true if and only if7;(A) > I;(B), given a combination of

k unary indicators.

and B with A ¥ B, i.e., A is not better thar3, for which the

) & (expression) in order to improve readability. For comparison method returns true. A comparison method that is

complete with regard to any relation is the one that always yields

IRecall that we assume that only a single optimization run is performed per
algorithm.
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true; it is useless, though, as it does not provide any compati-
bility. N
On the other hand, if we have a comparison method that is
>-compatible then the above situation is safe: whenever our
comparison method yields true, we can be sure thist better

thanB. However, we may miss opportunities, if the comparison _ e<l
method is not>-complete. In particular, there may be selts - e=1
e>1

and B where A is better thanB, but our comparison method —
returns false. A comparison method that always yields false is T T T T T T T T T T T T T
compatible and not complete regarding any relation. 5 10

To further illustrate this terminology, let us go back to thEig. 6. The dark-shaded area depicts the subspace thaosinated by the

example depicted in Fig. 3 and consider the following binargutionsin4, for e = 9/10; the medium-shaded area represents the subspace
indicator/,, which is inspired by concepts presented in [17]. weakly dominated byl, (equivalent toe = 1). The light-shaded area refers

s s ; Ind; . ; to the subspace-dominated by the solutions id; for ¢ = 4. Note that the
Definition 5 (Blnary € Indlcator)' Suppose, without areas are overlapping, i.e., the medium-shaded area, includes the dark-shaded

loss of generality, a minimization problem with pPOS- one, and the light-shaded area includes both of the other areas.
itive objectives, i.e.,Z C R*' . An objective vector
2t = (24,23, ...,2}) € Z is said toe-dominate an-
other objective vectog? = (22, 22, ...
z' >, 22, if and only if

TABLE I
, zg) € Z, written as THE BINARY ¢-INDICATOR VALUES I (A, B) FOR ALL COMBINATIONS OF THE
SETS A1, A2, A3 AND P ASGIVEN IN FIG. 6

; 1 2 B A
Vi<i<niz; <e€-z A, Ay As P
. , : Lo Ay [ 1 2 [ 2 [172
for a givene > 0. We define théinary c-indicator /. as Ay [T 32 37
A3 [0 [ T [ 1 [ 183
I(A, B) = inf {Vz* € B3z' € A: 2" =, 2%} P T4 T6 1
€c

for any two approximation setd, B € .2

Loosely speaking, a vecter is said toe-dominate another
vector 22, if we can multiply each objective value #? by a
factor ofe and the resulting objective vector is still weakly domi-
nated byz!. Thereforez! =~ 22 implies that there exists< 1
such thatz!e-dominatesz2. Accordingly, thee-indicator gives
the factor by which an approximation set is worse than another
with respect to all objectives, or to be more precik€A, B) Fig. 7. The shaded area stands for those ordered pdirs3) for which
equals the minimum factar such that any objective vector inﬁf(R A) > 1 (left) or I.(A4, B) < 1A I(B, 4) > 1 (right), respectively.

. . L . ote that the right comparison method is boticompatible and>-complete.
B is e-dominated by at least one objective vectordnin the
single-objective casd, (A, B) is simply the ratio between the
two objective values represented Ayand B.

In practice, the binary-indicatorI.(A, B) can be calculate
intime O(n - |A| - |B]) as follows:
1
€21 52 = lréllasxn ?

What comparison methods can be constructed using
d the e-indicator? Consider, e.g., the interpretation function
E .= (I.(B, A) > 1). The corresponding comparison method
Cy, g is >-complete asA > B implies thatl.(B, A) > 1.

On the other hand?;_, g is not>-compatible asd || B also
implies thatl.(B, A) > 1. This is visualized in Fig. 7, where
€2 = min ey Lo V22 e B we see on the left-hand side the area for whigiB, A) > 1.

zlea 7 It becomes obvious that the indicator value is greater than one
I(A, B) = max ez even if the two sets are incomparable.
If we choose a slightly modified interpretation functibh.=
(I(A, B) < 1AI(B, A) > 1), then we obtain a comparison
methodCy, that is both>- andr>-complete. The differences
22€B zl€A 1<i<n 2z between the two comparison methods are graphically depicted
in Fig. 7. On the right-hand side, we see that the new comparison

For instance/.(A1, As) = 1, I(A1, A3) = 9/10, and  ehod exactly characterizes all pairé, B) for which A is
I.(A1, P) = 4 in our previous example (cf. Fig. 6). The COMypetter thanB. ie.. A > B.

Vzl € A, 2B

or equivalently

ES

I.(A, B) = max min max

=N

~

plete table for all indicators is given in Table II.
2In the same manner, an additizéndicatorl, , can be defined
I..(A, B)= in]tF't{Vz2 €BIz' e Azt =, 27}
€e

wherez! >., 22 if and only if

Vi<i<m ozl <e+zl.

7

In the remainder of this paper, we will theoretically study and
classify quality indicators using the above framework. Given a
particular quality indicator (or a combination of several indica-
tors), we will investigate whether there exists an interpretation
function such that the resulting comparison method is compat-
ible and in addition complete with respect to the various dom-
inance relations. That is, we determine how powerful existing
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quality indicators are in terms of their capability of indicating £
thator whetherd > B, A > B, A || B, etc. The next section is
devoted to unary quality indicators, while binary indicators will b

be discussed in Section IV.

I1l. COMPARISON METHODS BASED ON UNARY QUALITY
INDICATORS

Unary quality indicators are most commonly used in the liter-
ature; what makes them attractive is their capability of assigning I I
quality values to an approximation set independent of other sets a b
under consideration. They have limitations, though, and there

are differences in the power of existing indicators as will bg9: 8- lllustration of the construction used in Theorem 1 for a 2-D
minimization problem. We consider an open rectangle b)*> and define

u

shown in the following. an open lineS within. For S holds that any two objective vectors contained
are incomparable to each other, and therefore any sulbset S is an
A. Limitations approximation set.

Naturally, many studies have attempted to capture the multi- e -
objective nature of approximation sets by deriving distinct ind vith Af B mu's'F dlf;fer ”; atleast (t)nef of tZgnT;%:/NaOt(:r ‘;g',?.es-
cators for the distance to the Pareto-optimal set and the div I:\_er_e c()jre, zn én#_ec Illonl rodm ta seto tca(rj_ |?_a 0 IS
sity within the approximation set. Therefore, the question arisggluIred, which finally ieads to a contradiction.

whether in principle there exists such a combination of, e. ,Not(i t_hat Theorerrrl]l also g‘oﬁf:fl) i r\]/\_/ehogly azsurrtlr(]a that
two indicators—one for distance, one for diversity—such th% contains an open nypercube or which ©, g has the

we can detectvhetheran approximation set is better than an: esired property and 2) if we consider any other relation from

other. Such a combination of indicators, applicable to any tngble | (for|| and it follows directly from Theorem 1, for-

of problem, would be ideal because then any approximation d_}> t?ﬁ_ proof Ir;as to be sllghtll(y m3d|f|e(i|1)_. h diti th
could be characterized by two real numbers that reflect the dif- Iven this resuft, one may ask under which conditions the

ferent aspects of the overall quality. The variety among the iﬁgnstructlor;] of such a_compar;f‘og m?t?oﬂ IS po”ssmle. F ?.r T'
dicators proposed suggests that this goal is, at least, difficultsttt?nce’ such a comparison method exists it we aflow an infinite
ber of indicators. The empirical attainment function [9],

achieve. The following theorem shows that, in general, it cannd" . ) N
be achieved. when applied to single approximation sets, can be understood

Theorem 1: Suppose an optimization problem with > 2 as a combination d¥| unary indicators, wherg| denotes the

objectives, where the objective spaceZis= IR". Then, there cardinality of Z. If Z = R", then this combination comprises

exists no comparison methdad;, g based on a finite combi- an _infinite number of unary ind_icators. On its basisy &om-
nation I of unary quality indicators that is -compatible and patible and>-complete comparison method can be constructed.

>-complete at the same time, i.e, The situation a_llso chang_es, if we require that each approxi-
mation set contains at maximuhobjective vectors.
Cr,e(A,B)& A> DB Corollary 1: Let Z = IR". It exists a unary indicatof and

L an interpretation functiod’ such that
for any approximation setd, B € (.

That is, for any combinatiod of a finite number of unary Cre(A,B)& A> B
quality indicators, we cannot find an interpretation function forany A, B € Q, with |A], | B| < L.
such that the corresponding comparison methas-isompat- ' ' : .,
ible and>-complete. Or in other words: the number of criteria, _ (0, 1) in the proof. The indicato is constructed as
that determine what a good approximation set is is infinite.  ¢;1ows: '

We only sketch the proof here, the details can be found in
the Appendix. First, we need the following fundamental results I(A) = 0.dids - - didids - - dids - -

from set theory [18]: whered: denotes théth digit after the decimal point of thgth
« R, R*, and any open intervék, b) in IR resp. hypercube elementind. If A contains less tharelements, the first element
(a, b)* in R* have the same cardinality, denoted?ds, s duplicated as many times as necessary. Accordingly, there is
i.e., there is a bijection from any of these sets to any othej injective functionk that maps each real number in (0, 1) to
« if a setS has cardinalitXZNO, then the cardinality of the an approximation set. If we defing asE := (R(I(A)) >
power sef(S) of Sis2* °, i.e., there is noinjection from R(I(B))), the corresponding comparison meth@g  has the
P(S) to any set of cardinalit)‘lNO. desired properties. I O
As we consider the most general case whgre IR, we can The corollary, however, is rather of theoretical than of prac-
construct a sef (cf. Fig. 8) such that any two points containedical use. The indicator constructed in the proof is able to in-
are incomparable to each other. Accordingly, any sulseftS dicatewhetherA is better thanB, but it does not express how
is an approximation set and the power sef pthe cardinality of much better it is—this is one of the motives for using quality
whichis22" is exactly the set of all approximation sets” S. indicators. What we actually want is to apply a metric to the in-
We will then show that any two approximation setsB C S dicator values. Therefore, a reasonable requirement for a useful

Proof: Without loss of generality, we restrict ourselves to
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TABLE I
OVERVIEW OF POSSIBLE COMPATIBILITY /COMPLETENESSCOMBINATIONS
WITH UNARY QUALITY INDICATORS. A MINUS MEANS THERE IS NO
COMPARISON METHOD C'r, g THAT IS COMPATIBLE REGARDING THE
Row-RELATION AND COMPLETE REGARDING THE COLUMN-RELATION. A PLUS
INDICATES THAT SUCH A COMPARISON METHOD IS KNOWN, WHILE A
QUESTION MARK STANDS FOR A COMBINATION FOR WHICH IT IS UNCLEAR
WHETHER A CORRESPONDINGCOMPARISON METHOD EXISTS

combination of indicators may be thatAfis better than or equal
to B, thenA is at least as good &3 with respect to alk indi-
cators, i.e.,

A= B= (V1<i<k I(A) > I;(B)).

That this condition holds is an implicit assumption made in
many studies. If we now restrict the size of the approximation

sets tol and assume an indicator combination with the above ~ compatibility one o5 c‘;mples“ess SV
property, can we then deteshetherA is better tharB? To an- ov 7 - - - P —
swer this question, we will investigate a slightly reformulated -+ 7 - |- - - |-
> 7 [ 7| - - B

statement, namely gy T 1 19
; + + + | + - 7

A= Be (V1<i<k: I;(A) > I;(B) ; RN N A N A

as this is equivalent to
A B & (V1<i<k: IL(A) > I;(B))

between the dominance relations, e.g:;--compatibility
implies ©>-compatibility, ¥-compatibility implies %¥-com-
patibility, and >-completeness implies->-completeness.
Furthermore, we will only consider the simplest case whefgoreover, note that in the following, we will not consider the
l. = 1, i.e., each approximation set consists of a single objegase of identical approximation sets = B as an equality
tive vector. check can be easily incorporated into any comparison method.
Theorem 2: Suppose an optimization problem with> 2 Therefore, in Table IV, the relations andy are not contained.
objectives where the objective spaceZs= R". Let] = 1) >-Compatibility: The use of>-compatible comparison
(11, Iz, ..., Ix) be a combination of unary quality indicators methods based on unary indicators is restricted according to
andE := (Y1 <4 < k: ;({2'}) > I:({2°})) an interpreta- Theorem 2: in order to detect dominance between objective
tion function such that vectors, at least as many indicators as objectives are required.
CI,E({21}7 {22}) & 2! = 22 Hence, itis not surprising that, to the best of our knowledge, no

] o >-compatible comparison methods have been proposed in the
for any pair of objective vectors', z? € Z. Then, the number |iterature. Their design, though, is possible:

of indicators is greater than or equal to the number of objectives
i.e.,k > n.
Proof. See the Appendix.
This theorem is a formalization of what is intuitively clear: we
cannot reduce the dimensionality of the objective space without
losing information. We need at least as many indicators as ob-

'« Suppose a minimization problem and let
1/9(4) = sup{{(a, a, ..., )} > A}
a€ER

) = big]fR{{(b, b,...,b)} < A}

jectives to be able to deteathetheran objective vector weakly
dominates or dominates another objective vector. As a conse-
guence, a fixed number of unary indicators is not sufficient for
problems of arbitrary dimensionality even if we consider sets
containing a single objective vector only.

In summary, we can state that the power of unary quality
indicators is restricted. Theorem 1 proves that there does not

We assume that is bounded, i.e JF7¢(A) andIH¢(A)
always exist. As illustrated in Fig. 9, the two indi-
cator values characterize a hypercube that contains
all objective vectors inA. If we define the indicator
Iyc = (IEC, 1J19) and the interpretation functiory
asE := (IHC(A) < IH9(B)), then the comparison
methodCy,, ., g is >-compatible.

exist any comparison method based on unary indicators that is® SUPPOSe a minimization problem and let

>-compatible and>-complete at the same time. This rules out
also other combinations, Table 11l shows which. It reveals that
the best we can achieve is eithex-compatibility without any
completeness, a¢-compatibility in combination with>-com-
pleteness. That means we either can make strong stateménts (*
strongly dominate$3”) for only a few pairsA > B; or we can
make weaker statementsAis not worse thar3,” i.e., A = B

or A || B) for all pairsA > B.

B. Classification

We now will review existing unary quality indicators ac-
cording to the inferential power of the comparison methods that
can be constructed on their basiscompatible j¢-compatible,
and not compatible with any relation listed in Table III. Table IV

IP(A) = ig}%{‘v’(zl, ceoyin) € Aizi < a}
forl <i<mnand

19,,(4) = { 0, if A contains two or more elements

1, else.

The idea behind these indicators is similar to the above
example. We consider the smallest hyperrectangle that en-
tirely enclosesA. This hyperrectangle comprises exactly
one pointO that is weakly dominated by all members in
A; in the case of a two-dimensional (2-D) minimization
problem, it is the upper right corner of the enclosing rec-
tangle (cf. Fig. 9). We see thaf , ..., I¢ are the coordi-
nates of this poinO. I, serves to distinguish between

prowdes an overview of the various indicators discussed hereaNote thatthere exists a trivial case: the comparison method that always yields

In this context, we would also like to point out the relationshipialse.
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TABLE IV
OVERVIEW OF UNARY INDICATORS. EACH ENTRY CORRESPONDS TO ASPECIFIC COMPARISON METHOD DEFINED BY THE INDICATOR AND THE INTERPRETATION
FUNCTION IN THAT ROW. WITH RESPECT TOCOMPATIBILITY AND COMPLETENESS NOT ALL RELATIONS ARE LISTED BUT ONLY THE STRONGEST AS
E.G, >>-COMPATIBILITY IMPLIES >>-COMPATIBILITY (CF. SECTION IlI-B)

indicator | name / reference [ Boolean function [[ compatibility | completeness
Iye enclosing hypercube indicator / Section I1I-B.1 I g’C(A) <I fC(B) - -
Io objective vector indicator / Section II-B.1 I9(A) <I9(B) > -
Iy hypervolume indicator / [7] Ig(A) > Ig(B) 1% >
TIw average best weight combination / [19] Iw (A) < Iw (B) % >
Ip distance from reference set / [20] Ip(A) < Ip(B) ¥ >
T unary e-indicator / Section I1I-B.2 I1(A) < I1(B) p3 -
Ipp fraction of Pareto-optimal front covered / [22] Ipr(A) > Ipr(B) ¥ -
Ip number of Pareto points contained / Section IlI-B2 | Ip(A) > Ip(B) 3 -
TR error ratio / [13] Ier(A) >0 jva -
Icp chi-square-like deviation indicator / [14] Icp(A) < Icp(B) - -
Is spacing / [23] Is(A) < Is(B) - -
ITonvg overall nondominated vector generation / [13] TonvG(A) > Ionvg(B) - -
Iep generational distance / [13] I6p(A) < Igp(B) - -
Tve maximum Pareto front error / [13] Ive(A) < Ine(B) - -
Iyms maximum spread / [21] Ins(A) > Ins(B) - -
TIvp minimum distance between two solutions / [24] Ivp(A) > Iyp(B) - -
Ice coverage error / [24] Ice(A) < Ice(B) - -
Ipy deviation from uniform distribution / [25] Ipy(A) < Ipy(B) - -
Ios Pareto spread / [26] Tos(A) > Tos(B) - -
T4 accuracy / [26] T4(A) > 14(B) - -
Inpe number of distinct choices / [26] Inpc(A) > Inpc(B) - -
Icr cluster / [26] Ic(A) < Ic(B) - -

: Fig. 10. The shaded area stands for those ordered fdir$3) for which
A : a comparison method’;, 5 yields true. The left-hand side shows a possible
: pattern, if the comparison methodtis-compatible, but not>-complete. The
right hand side represents the hypervolume comparison méthgd » with
E := (Iu(A) > I4(B)) thatis both¥-compatible and>-complete.

g e 7

Fig. 9. Two indicators capable of indicatitizat A > B for someA, B € (. O_bVIOUSI_y’Id(A) : 1 Imp“?SA = P. Thus, in combination
On the left hand side, it is depicted how the indicator defines a hypercube With the interpretation functiol := (I, (A) = 1 A I (B) >
irhoun_dhan _approxima}tiondSehh\gohefrg_l'{”(Af) =a f:lljr)d I319(4) = b-h 1) a comparison method can be defined that-isompatible
e right picture is related to t indicator: for any objective vector in the H : .
shaded area we can detect that it is dominated by the approximatidnidete, and detectshat A is better than3 for all pa[rsA7 B e Qwith
TO(A) = ¢, T9(A) = d, andIQ(A) = 0. A = PandB # P. The same construction can be made for
some other indicators, e.g., the hypervolume indicator, as well.

Nevertheless, these comparison methods are only applicable if

single objective vectors and larger approximation sets. Lgfe of the algorithms under consideration can actually gen-
Io =(I7, ..., I/,;) and define the interpretation f“nc'erate the Pareto-optimal set

- — ~ . 70 )
ionEask := (V1 <4 < n+ 1 I7(A) < I7(B)). 5y 4 compatibility: Consider the above unagyindicator
4 For any paird, B € , it holds

Then, the comparison methddr,,, g is >-compatible; I
it detects dominance between an approximation set an
those objective vectors that are dominated by all members
of this approximation set.
Note that both comparison methods are evencompatible,
but neither is complete with regard to any dominance relation.
This property is visualized in Fig. 10. and (which follows from the latter)
Moreover, some unary indicators can also be used to design a
>-compatible comparison method if the Pareto-optimalsist
known. Consider, e.g., the following unasyindicator I.; that
is based on the binaryindicator from Definition 5:

A>--B :>151(A) < Iel(B)
A> B = 11(A) < 1.(B)

I4(A) <I.(B)=> A4A£4B= A#4B.

Therefore, the comparison method;, g with E =
(I1(A) < I.4(B)) is ¥-compatible and->-complete, but

I (A) = I.(A, P). neitherc>- nor >-complete. That is whenevet ~> B, we
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[22], which gives the ratio of the number of Pareto-optimal ob-
jective vectors ird to the number of all Pareto-optimal objective
vectors. Nevertheless, the power of these comparison methods
is limited because none of them is complete with respect to any
dominance relation.

3) Incompatibility: Section IlI-A has revealed the difficul-
ties when trying to separate the overall quality of approximation
sets into distinct aspects. Nevertheless, it would be desirable if
we could look at certain criteria such as diversity separately, and
' accordingly several authors suggested formalizations of specific
aspects by means of unary indicators. However, we have to be
aware that often these indicators idageneralneither indicate
Fig. 11. Example of two incomparable sefs and B. The hypervolume thatd > B nor‘_4 Dé B. .
comparison method that ig-compatible andi>-complete yields true as ~ One class of indicators that does not allow any conclusions
In(A) > In(B). to be drawn regarding the dominance relationship between ap-
proximation sets is represented by the various diversity indica-
tors [14], [21], [23]-[26]. If we consider a pait, B € Q with

ﬁ—b

will be able to state thatl is not worse tharB. On the other 1 L& :
hand, there are cases> B for which this conclusion cannot 4 > B the indicator value oA can, in general, be less or

be drawn, althought is actually not worse thaf. The same 9reater than or even equal to the value assignefi {for the
holds for the two indicators proposed by [19] and [20]. We Wiﬂjlver5|ty indicators referenced labpve). Therefor'e, the compar-
not discuss these in detail and only remark that the followid§°n Methods based on these indicators are neither compatible

example can be used to show that both indicators in combifi2” complete with respect to any dominance relation or comple-

tion with the interpretation functio® := (I(A) < I(B)) are MeNtofit o _
not --complete (and>-complete): the Pareto-optimal set is The same holds for the three indicators proposed in [13]:
P=1{(1,1)}, andA = {(4, 2)} andB = {(4, 3)}. overall nondominated vector generatidpnve, generational

The hypervolume indicatafy [7], [21] is the only unary in- distance[GD, and maximum Pareto front eréfg. The first

dicator we are aware of that is capable of detecting thistnot just gives the number of elements in the approximation set, and
worse thanB for all pairsA > B. It gives the hypervolume it is obvious that it does not provide sufficient information to

of that portion of the objective space that is weakly dominat&®ncluded > B, A ¢ B, etc. Why this also applies to the
by an approximation set. We notice that fromd B fol- other two, both distance indicators, will only be sketched here.

lows thatIz(A) > Ix(B); the reason is that must contain Assume a 2-D minimization problem for which the Pareto-op-

at least one objective vector that is not weakly dominated @l SetP consists of the two objective vectors (1, 0) and (0,

B, thus, a certain portion of the objective space is dominatdd): Now, consider the three sets= {(2, 5)}, B = {(3, 9)},
by A but not by B. This observation implies botf-compati- andC = {(10, 10)}. Forboth distance indicators holds) <
bility and >-completeness. If we also consider the case B, [(4) < I(C), butA > B »»> C, provided that Euclidean
this method is evet.-compatible (cf. Fig. 10). However, il distance is considered. Thus, we cannot conclude whether one
is incomparable t®, thenC;,, » may also yield true as shownSEt is l:_)ett_er or worse than gn_other by just looking at the order
in Fig. 11. Nevertheless, according to Theorem 1 and Table §f the indicator values. A similar argument as for the genera-
r-compatibility is the best we can achieve foracomplete tional distance applies to the coverage error indicator presented
comparison method based on unary quality indicators. in [24]; .the only difference is that the coverage error denotes
Van Veldhuizen [13] suggested an indicator, the error ratlge minimum distance to the Pareto-optimal set instead of the
Igr, on the basis of which g-compatible (but nogt-compat- average distance. _ _ _
ible) comparison method can be definégls (A) gives the ratio _Knowles and Corne [11], [12] have discussed the incompati-
of Pareto-optimal objective vectors to all objective vectors in tHalIYY Of the Is, Ik, Ipu, andloxve indicators, though from
approximation sett. Obviously, if [z (A) > 0, i.e.,A contains a different perspective, in more depth, and the interested reader
at least one Pareto-optimal objective vector, then there existsigeferred to [11] for a more detailed discussion of this topic.
B € Qwith B = A. On the other hand, ift consist of only a Finally, one can ask whether it is possible to combine several
single Pareto-optimal objective vector, thesk (A) > Izr(B) indicators for which nag#-compatible comparison method ex-

forall B > A: if B contains not only Pareto-optimal objectivéStS in such a way that the resulting indicator vector allows to
vectors, thenlzp(A) > Inpgp(B). Therefore,Cy, . g with detect thatd is not worse tharB. Van Veldhuizen and Lamont
1 " ' ER,

E := (Ipp(A) > Ipgr(B)) is not p-compatible. However [2], for instance, used generational distance and overall non-

if we consider just the total number (rather than the ratio) §eminated vector generation in conjunction with the diversity
Pareto-optimal objective vectors in the approximation set, Wadicator of [23], while Detet al. [6] applied a similar combina-

obtain-compatibility. This also holds for the indicator used iffion of diversity and distance indicators. Other examples can be
foundin, e.g., [27] and [24]. As in all of these cases, counterex-

amples can be constructed that show the corresponding com-
4Note thatZ has to be bounded, i.e., there must exist a hypercub&ithat P P 9

enclose<Z. If this requirement is not fulfilled, it can be easily achieved by arpar]son methOds_to be _n¢t—co.mpat|b_le, the above question re-
appropriate transformation. mains open and is not investigated in more depth here.
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V. COMPARISONMETHODSBASED ON BINARY QUALITY to the criterion of whether a corresponding comparison method
INDICATORS exists that is»--compatibleand »-complete with regard to a

Binary quality indicators can be used to overcome the diff'TQ‘-pec'f'C I’e|<jitIOI”d>.. , itz d Thiel
culties with unary indicators. However, they also have a draw-'S mehnuone in Section II-B, i'tz er and Thiele [7] ﬁug-
back: when we comparealgorithms using a single binaryindi-geSt_ed the coverage indicatéf, w ereIC(A_, B) gives the
cator, we obtairi(t — 1) distinct indicator values—in Contrastfractlon of solutions inB that are weakly dominated by at least

to thet values in the case of a unary indicator. This renders tR8€ Solution ind. Ic(4, B) = 1 is equivalent tad > B (4

analysis and the presentation of the results more difficult. Ne/eaKy qb(?min?jteff) ar|1d the_r(;fore c%mparison metf(lj@ﬁ, 7IE
ertheless, Theorem 1 suggests that this is in the nature of mmPat be anadcomp e(tje wit hregar tomtgt‘:\z I, anA: rela-
objective optimization problems. tions can be constructed. Furthermore, witt (Ic(A, B) =
1AIc(B, A) = 0), we obtain a comparison meth6d,, ¢ that
is »--compatible and--complete.

Hansen and Jaszkiewicz [8] proposed three symmetric binary

In principle, there are no such theoretical limitations of binarﬁﬁdicatorsIR Ir,, and Iy, that are based on a set of utility
indicators as for unary indicators. For instance, the indicator ¢, tions. The U;il’ity functions can be used to formalize and

incorporate preference information; however, if no additional

A. Limitations

4, A->B knowledge is available, Hansen and Jaszkiewicz suggest using

3, A-B a set of weighted Tchebycheff utility functions. In this case,
I(A,B)=¢2, A>B the resulting comparison methods are, in genesatomplete

1, A=B but notr>-compatible as Theorem 3 applie§ 4, B) can be

0, else greater or less than 0 if || B). Accordingly, these indicators,

_ _ in general, do not allow construction of a comparison method
allows to construct compatible and complete comparis@Rat is both compatible and complete with respect to any of the
methods with regard to any of the dominance relations. HoWs|ations in Table I.
ever, this usually does not hold for existing practically useful | (21, a binary versions, of the hypervolume indicator
binary indicators, in particular those that are, as Knowles ang [7] was proposed; the same indicator was used in [10].
Corne [12] denote itsymmetricj.e., I(A, B) = ¢ — I(B, A)  1..(A, B)is defined as the hypervolume of the subspace that
for a constant. Although, symmetric indicators are attractivgs yeakly dominated byl but not by3. FromIys(A, B) =0,
as only half the number of indicator values has to be considefigqo|iows that B = A, and therefore, as with the coverage
in comparison to a general binary indicator, their inferentighgicator, compari_son methods;,, z compatible and com-

power is restricted as we will show in the following. plete regarding the>, >, ||, and = relations are possible.
Without loss of generality, suppose that = 0, i.€., However, there exists ne--compatible and--complete or
I(A, B) = —I(B, A); otherwise consider the transformation._,__compatible and--complete comparison method solely

I'(A, B) = ¢/2 — I(A, B). The question is whether wepased on the binary hypervolume indicator.

can construct a>-compatible and>-complete comparison  knowles and Corne [16] presented a comparison method

method based on this indicator; according to the discussionjgsed on the study by Fonseca and Fleming [15]. Although

Section Ill-A, we assume thadf =: (1(4, B) > I(B, A)). designed for the statistical analysis of multiple optimization
Theorem 3:Let / be a binary indicator with (4, B) = yns, the method can be formulated in terms of rarary

—I(B, A) for A, B €  and E an interpretation function ingicator1; ; if only one run is performed per algorithm or the

with E =: I(A, B) > I(B, A). If the corresponding com- 55qrithms are deterministic. Here, we restrict ourselves to the
parison method’;, g is >-compatible and>-complete, then ¢aqe,, — 2 as all of the following statements also hold for

I(A, B)=0forall A, B e Qwith A= BorA| B. m > 2. A user-defined set of lines in the objective space, all of
Proof: Let A, B € Q. FromA > B < I(A4, B) >

k them passing the origin and none of them perpendicular to any
I(B, A), itfollows thatA ¢ B < I(A, B) < I(B, A), and  qf the axes, forms the scaffolding of Knowles and Corne’s ap-
therefored || BVA=B & Ay BABY A< I(A, B) = proach, First, for each line, the intersections with the attainment
I(B, A). From the symmetny/ (A, B) = —I(B, A), it then

: ] surfaces [15] defined by the approximation sets under consider-
follows thatA || BV A = B is equivalenttd (A, B) = 0. U aiion are calculated. The intersections are then sorted according

~ A consequence of this theorem is that a symmetric binagy heir distance to the origin, and the resulting order defines a
indicator, for whichA > B & I(A, B) > I(B, A), candetect ranking of the approximation sets with respect to this line. If
whetherA is better thanB, but not whethetd > B, A || B,  only two approximation sets are considered, thign(A, B)
or A = B. On the other hand, it follows froni(A, B) # 0 gives the fraction of the lines for which is ranked higher
for a pairA || B thatCr, p cannot be>-compatible, if it is than B. Accordingly, the most significant outcome would be
>-complete. We will use this result in the following d|scu55|qu(A7 B) = 1andI.;(B, A) = 0. However, this method
of existing binary indicators. strongly depends on the choice of the lines, and certain parts
of the attainment surface are not sampled. Therefore, in the
above case eithet is better thanB or both approximation are

In contrast to unary indicators, only a few binary indicatormmcomparable to each other. As a consequence, the comparison
can be found in the literature. We will classify them accordinmethodC;,, g with E := (I;(A, B) = 1A IL(B, A) =0)

B. Classification
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TABLE V

OVERVIEW OF BINARY INDICATORS. A MINUS MEANS THAT IN GENERAL THERE IS NOCOMPARISONMETHOD C'r,  BASED ON THEINDICATOR I IN THE
CORRESPONDING ROWTHAT IS COMPATIBLE AND COMPLETE REGARDING THE RELATION IN THE CORRESPONDINGCOLUMN. OTHERWISE, AN EXPRESSION IS
GIVEN THAT DESCRIBES ANAPPROPRIATEINTERPRETATIONFUNCTION £

ind. name / reference

compatible and complete with respect to relation:

- [ > | | z | = l I
I epsilon indicator / I.(A,B)< 1 - I.(A,B)<1 I.(A,B)<1 I.(A,B)=1 I.(A,B) > 1
Section 11I-B I (B, A) > 1 I.(B,A) =1 I.(B,A) > 1 ’
T.+ | additive epsilon T+ (A4 B)<0 |- T+ (A B) 20 [ Iea(AB) <0 [ Ies(AB) =0 | I.+(4,B) >0
indicator / Section II-B Iy ) >0 Iy (B,A)=0 | I.;+(B,A) >0
Ic coverage / [7] - Ic(A,B)=1 | Ic(4, =1 Ic(A,B)=1 Ic(A,B)=1 0<Ic(A,B)<1
Io(B,A)=0 | Io(B,A) <1 Ic(B,A)=1 | 0<Ic(B,A)<1
Iy o | binary hypervolume - - Igo Y>0 | Ig2(A,B)>0 | Tg2(A,B) =0 | Ig2(A,B)>0
indicator / [21] : Ir2(B,A) =0 | Iga(B,A)=0 | Iga(B,A) =0 | Igs(B,A) >0

Ig1 | utility function - -
indicator R1 / [8]

Iro | utility function - - -
indicator R2 / [8]

Irs | utility function - - _
indicator R3 / [8]

197, lines of intersection / - - n
[16]

is, in the general case, nstcompatible; however, it igt-com-
patible and>>-complete.

Finally, we have already shown in Section II-C thata&om-
patible and>-complete comparison method exists for thia-
dicator. The casé.(A, B) < 1 is equivalent toA > B and

the same statements as for the coverage and the binary hyper-
volume indicators hold. Furthermore, the comparison method

Cr. g with E = (I.(4, B) < 1) is »>-compatible and
>=>-complete.

Table V summarizes the results of this section. Note that it
only contains information about comparison methods that are
both compatible and complete with respect to the different dom-

inance relations.

V. DISCUSSION

A. Summary of Results

We have proposed a mathematical framework to study quality
assessment methods for multiobjective optimizers. Starting with
the assumption that the outcome of a multiobjective EA can
be represented by a set of incomparable objective vectors, a
so-called approximation set, we have introduced several domi-
nance relations on approximation sets. These relations represent
a formal description of what we intuitively understand by one

approximation set being better than another. The tguality

indicator has been used to capture the notion of a quality mea-
sure, and a comparison method has been defined as a combi-
nation of quality indicators and an interpretation function that
evaluates the indicator values. Furthermore, we have discussed
two properties of comparison methods, namely compatibility
and completeness, which characterize the relationship between

are used. This even holds if we consider approximation
sets containing a single objective vector only.

Existing unary indicators at best allow to infé¥atan ap-
proximation set is not worse than another, e.g., the dis-
tance indicator by Czyzak and Jaszkiewicz [20], the hy-
pervolume indicator by Zitzler and Thiele [7], or the unary
e-indicator presented in this paper. However, with many
unary indicators and also combinations of unary indica-
tors, no statement about the relation between the corre-
sponding approximation sets can be made. That is, al-
though an approximation set may be evaluated better
than an approximation sét with respect to all of the in-
dicators,B can actually be superior td with respect to

the dominance relations. This holds especially for the var-
ious diversity measures and also for some of the distance
indicators proposed in the literature.

We have given two examples demonstrating that com-
parison methods based on unary indicators can be con-
structed, such thatl can be recognized as being better
thanB for some approximation sets B. It has also been
shown that the practical use of this type of indicator is nat-
urally restricted.

Binary indicators, which assign real numbers to ordered
pairs of approximation sets, in principle do not possess the
theoretical limitations of unary indicators. The binafipn-
dicator proposed in this paper, e.g., is capable of detecting
whetheran approximation set is better than another. How-
ever, not all existing binary indicators have this property.
Furthermore, it has to be mentioned that the greater infer-
ential power comes along with additional complexity: in
contrastto unary indicators, the number of indicator values

comparison methods and dominance relations. On the basis of to be considered is not linear but quadratic in the number

this framework, existing comparison methods have been ana-

lyzed and discussed. The key results are as follows.

of approximation sets.

* Unary quality indicators, i.e., quality measures that sung  conclusions

marize an approximation set in terms of a real number, are
The results of this paper have been obtained analytically, and

in generalnot capable of indicatingvhetheran approxi-

mation set is better than another—also if several of thenaturally, the question arises: how they translate into practice,
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i.e., what consequences do the theoretical considerations haany other aspects according to which comparison methods can
for the researcher who is carrying out a comparative study? be investigated, e.g., the computational effort, the sensitivity to
The choice of the quality indicator(s) strongly depends on tisealing, the requirement to have knowledge about the Pareto-op-
type of statements we would like to make. Are we interested fimal set, etc. Several such aspects have been investigated in
general statements that hold for many scenarios and are basefddhand [12]. Also, in light of these aspects, the binasin-
as few assumptions as possible regarding the decision makéitsator possesses several desirable features. It represents a nat-
preferences? Or do we consider a specific scenario where tiel extension to the evaluation of approximation schemes in
preferences of the decision maker are (partially) known, e.g.,tlreoretical computer science [28] and gives the factor by which
terms of a ranking of the objectives? Often, it is even desirakd@ outcome is worse than another. Thus, it has a clear interpre-
to be able to draw both general and specific conclusions.  tation—in contrast to, e.g., the coverage and the hypervolume
The most general statements possible are of the form “dpdicators. Furthermore, it is cheap to compute as opposed to
proximation setd strictly dominates / dominates / is better thathe hypervolume indicator, which is computationally expensive
/ weakly dominates approximation gef’ which are only based [11].
on the concept of Pareto dominance (cf. Table 1). In this case n summary, for general statements, we recommend to use the
the comparison method should be at least capable of detecthigary e-indicator (multiplicative or additive), according to the
whether A is better thanB, i.e., it should be compatible andcurrent status of knowledge. However, there may be particular
complete with respect to as many of the dominance relationssegnarios where this indicator is not appropriate. In addition,
possible. Since this cannot be achieved by using a (finite) comere specific, usually problem-dependent indicators can be in-
bination of unary quality indicators, e.g., one for distance arafuded in order to exploit knowledge about the decision maker’s
another for diversity, appropriate binary quality indicators angreferences and to draw more precise conclusions.
needed. Among the ones discussed in this paper, the two binary
e-indicators (Section 1I-C) and the coverage indicator [7] ar@. Future Work

best suited as they provide compatibility and completeness tonn, important issue, which has not been addressed in this

most of thg dominance relatlons._ .y paper, is the stochasticity of multiobjective EAs. Multiple op-
In practice, though, we would like to make additional, MOrg,;; ation runs require the application of statistical tests, and
precise statements—bgyopd the dominance re!atlorjA.. I in principle there are two ways to incorporate these tests in a
better thanB, the question is how much better itis.Afis in- 54 1ison method: the statistical testing procedure can be in-
comparable ta3, it would be interesting to know whether there,, 4o i the indicator functions or in the interpretation func-
are certain aspects in whichis better tharB. To answer these tion. Knowles and Corne’s approach [16] belongs to the first

questions, we ineluctably have to make assumptions about ?egory, while Van Veldhuizen and Lamont's study [2] is an ex-

decision maker's preferenggs, and the more assumptions a,realrﬂble for the second category. The attainment function method
corporated the more specific but also weaker the conclusi posed by Grunert da Fonsesizal. [9] can be expressed in

will be in the sense that they only hold if these preferences apRi¥rms of an infinite number of indicators and therefore falls in

Binary quality indicators are usually designed to formalizg,e second category. However, in contrast to [2] and [16], this
broadly valid preferences, and in the ideal case an indicajgbnqg is able to deteathetheran approximation set is better

allows to make statements about both dominance relatiqig, another. Investigating, in more depth, how all of these ap-
and preference-dependent per-forrnance. dlfferences. ’_/'\S to HPSaches are related to each other is the subject of ongoing re-
second aspect, the coverage indicator is only of limited usg ch.

because it does not say anything about how madl better

than B. In contrast, the binarg-indicators and the binary

hypervolume indicator [21] are able to detect performance dif-

ferences, but the latter does not indicateetherA dominates  Proof of Theorem 1:Let us suppose that such a comparison

or even strictly dominates. methodCy, g exists wherel = (I, I», ..., I;) is a combi-
Unary quality indicators, e.g., the various diversity measurasation ofk unary quality indicators anél’ a corresponding in-

often represent problem-dependent knowledge. Nevertheldespretation functiolR?* — {false, true}. Furthermore, as-

they can be useful to focus on specific aspects in order to desggme, without loss of generality, that the first two objectives are

and improve algorithms. We will not discuss the issue of how to be minimized (otherwise, the definition of the following set

integrate preference information into the quality assessmentdrhas to be modified accordingly).

detail here and refer to the work of Hansen and Jaszkiewicz [8]Choosea, b € IR with a < b, and considerS =

instead. However, note that a comparison method, independftt;, 20, ..., 2,) € Z;a < 2z < b, 1 < i < nAz =

of the type of indicators used, should be at leastompatible, b + a — z;}. Obviously, for anyz!, 22 € Z, eitherz! = 22

i.e., there is no pair of approximation setsand B where the or z! || 22, because} > z? impliesz} < zZ. Furthermore,

comparison method says is preferred tod, while actuallyA let Qg C Q denote the set of approximations sdtss  with

is better thamB (A > B). If the comparison method is in addi-A C S.

tion >>-complete, we know that whenevdr > B then A will As S €  and any subset of an approximation set is again an

also be evaluated better thah approximation sefQs is identical to the power sé2(S) of S.
Finally, the above considerations concentrate on only orla,addition, there is an injectiofi from the open intervala, b)

but essential criterion: the inferential power. Certainly, there at@S with f(r) = (r, b+a—r, (b+a)/2, (b+a)/2, ..., (b+

APPENDIX
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a)/2), it follows that the cardinality of5 is at leas2™°. As a Without loss of generality, assume a minimization problem in

consequence, the cardinality Qf is at leasp?"’. the following. We will argue by induction.

Now, we will use Lemma 1 (see below): it shows that for any n = 2 Leta, b € (u,v) with a < b and consider
A, B € Qg with A # B the quality indicator values differ, i.e., the incomparable objective vectofs, b) and
I;(A) # I;(B) for at least one indicataf;, 1 < ¢ < k. There- (b, a). If & = 1, then eitherl;({(a, b)}) >
fore, there must be an injection froft to R*, the codomain I, ({(b, a)}) orvice versa,; this leads to a contra-
of I. This means there is an injection from a set of cardinality diction to(a, b) # (b, a) and(b, a) ¥ (a, b).
22" (or greater) to a set of cardinaligo. From this absurdity, ,, — 1 ., 5 Supposer > 2, k < n and that the statement
it follows that such a comparison meth6g, g cannot existl] holds forn — 1. Choosea, b € (u, v) with

Lemma 1:Let Z = {(z1, 22, ..., zn) € R"a < 2; <0b, a < b, and consider the — 1 dimensional open
1 < < n} be an open hypercubeR" withn > 2, a, b € R, hypercubeS. = {(z1, 22, ..., Zn-1,¢) €
anda < b. Furthermore, assume there exists a combination of (w,v)";a < z < b1 < i < n—1}
unary quality indicator§ = (I, I, ..., I;) and an interpreta- for an arbitraryc € (u, v). First, we
tion functionZ, such that for any approximation sets B € will show that I;({(b, ..., b, c)}) <

Cr.e(A, B)& A B. L,({(ay ..., a,c)})forall <i<k.Assume
Then, forall4, B € Qwith A # B, there is at least one quality LA, . b0 > L({(a, ..., a,0)})
TN ~ ; g for any i. If L{(,...,b 0)}) >
indicator; with 1 < ¢ < k, such thatl;(A) # I;(B). L({(a, ..., a,c)}), then (a,...,a,c) ¥

Proof: Let A, B € 2 be two arbitrary approximation sets (b, ...I, b é), which yields a contradiction. If
with A # B. First, note thaCy g(A, B) impliesCr, g(B, A) I,L-({(b. __/.7 oY) = L{(a...,a )},
is false (and vice versa) as> B impliesB ¢ A. If A> Bor then ji({z}) S LU, ..., b. C)}/) for all
B> A, thenI;(A) # I;(B) foratleastond < i < k, because z € S., becauséa, ..., /a7 c)/ > zifz e Se.
OtherWiseC’],E(A7 B) = CI,E(B, A) = CI,E(A, A) would Then, for anyzl7 22/ € Svm it hOl_dS that '

be false. IfA || B, there are two cases: 1) bathand B contain
only a single objective vector or 2) either set consists of more V1< j <k, j#i:1;({z'}) > [;({z’}) & 2! = 2?
than one element.
Case 1) Choose e Z with A || {z} andB || {z} (such an
objective vector exists ag is an open hypercube
in R™). ThenA U {2} > AandA U {z} | B,
and from the former follow&’r, (A U {2z}, A) is
true. Accordingly,l;(A) # I;(B) for at least one

which contradicts the assumption that for any
n — 1 dimensional open hypercubel®"~*, at
leastn — 1 indicators are necessary. Therefore,
L{(b, ... b o)) < L({(a, ... a, 0)}).

Now, we consider the image of. in indi-

| < i < k, because otherwiséy p(AU{z}, B) = cator space. The vectorB({(b, ..., b, ¢)})

Cr. 5(AU{z}, A)would be true, which contradicts ﬁ;ge{r(e{éfa;ﬁéléflcl7 c)_}) {?;te;mme a;r;c)op;en
c — Y1y Y25 -0 -5 ¢
Au{z} || B. , R* L({(®b,....b0)}) < y <
Case 2) Assume, without loss of generality, thiatcon- L({(a a,0)}), 1 < i < k}, where

tains more than one objective vector, and choose
z € A with {z} || B (such an element must exist
asA || B). Then,A > {z}, which implies that

1(2) = (Li(2), I>(2), ..., Is(2)). H, has the
following properties:

Cr 5(A, {z}). Now supposd;(A) = I;(B) for 1) Sincec was arbitrarily ghpsen withifw, v), there
all'l < i < k; it follows that Cy, p(B, {z}) = are uncpuntgbly'manyd|§10|ntqpen hypgrrectangles of
CI.E(;L {Z_}) is true which is a contradiction to d|men5|onal|.tyk' |nt.hek.-d|men5|onal indicator space.
B I|| (2} This cor]tradlct|on_|mplles tha_ist >n. O
In summary, all casesA(>> B, B > A, andA || B) imply that 12) <HCZ_ 'S< (;gr.ieir;lf{ln'.a(ll K dlmen5|or)1s€asti)r _aII
I;(A) # I;(B) for at least ond < i < k. O Il({_(b = b. " y“lé’{l(’ Y25 - os yk)}) - e ( -
Proof of Theorem 2:We will exploit the fact that inR, the i\, - 0, 0)y) < Liila, -, @, €)5) = SUPLis

(yh Y2y o0y yk) € Hc}

3) H. contains an infinite number of elements.

4) H.Nn Hy = @ foranyd € (u, v), d > c: assume
y € H.n Hy, thenI({(a,...,a,¢)}) > y >
I({(b, ..., b,d)}), which yields a contradiction as
(ay...,a,¢c) % (b, ..., b, d).

number of disjoint open intervala, b)) = {z € R;a < z <

b} with @ < b is countable [18]. In general, this means that
IR¥ contains only countably many disjoint open hyperrectangles
(CLl./ bl) X (ag./ b2) XX (ak, bk) = {(Zl./ 29y v any Zk) € IRk,

a; < z; < b, 1 <1 < k} with a; < b;. The basic idea

is that whenever fewer indicators than objectives are available,
uncountably many disjoint open hyperrectangles arise—a con-

tradiction_. Fu_rthermore, we will show a slightly modified state- ACKNOWLEDGMENT
ment, which is more general: # contains an open hypercube
(u, v)™ with u < v such that for ang', 22 € (u, v)" The authors would like to thank W. Ramey for the tip

. g 2 1 9 about the proof of Theorem 2, T. Erlebach, S. Chakraborty, and
(Vi<i<k L({z'}) 2 L({z"})) & 2" = 2 B. Schwikowski for interesting discussions regarding this work,
thenk > n. and the anonymous reviewers for their helpful comments.
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