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Abstract. The Strength Pareto Evolutionary Algorithm (SPEA)! is a relatively
recent technique for finding or approximating the Pareto-optimal set for multiob-
jective optimization problems. In different studies’? SPEA has shown very good
performance in comparison to other multiobjective evolutionary algorithms, and
therefore it has been a point of reference in various recent investigations.® Fur-
thermore, it has been used in different applications.* In this paper, an improved
version, namely SPEA2, is proposed, which incorporates in contrast to its predeces-
sor a fine-grained fitness assignment strategy, a density estimation technique, and
an enhanced archive truncation method. The comparison of SPEA2 with SPEA and
two other modern elitist methods, PESA and NSGA-II, on different test problems
yields promising results.
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1 INTRODUCTION

After the first studies on evolutionary multiobjective optimization (EMO) in the
mid-1980s, a number of Pareto-based techniques were proposed in 1993 and 1994,
which demonstrated the capability of EMO algorithms to approximate the set of
optimal trade-offs in a single optimization run. These approaches did not incor-
porate elitism explicitly, but a few years later the importance of this concept in
multiobjective search was recognized and supported experimentally.? A couple of
elitist multiobjective evolutionary algorithms were presented at this time, among
others SPEA.! SPEA, an acronym for Strength Pareto Evolutionary Algorithm,
was one of the first techniques that were extensively compared to several existing
evolution-based methods."? As it clearly outperformed the (non-elitist) alternative
approaches under consideration, it has been used as a point of reference by vari-
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ous researchers.®> Meanwhile further progress has been made and recently proposed
methods, for instance NSGA-II° and PESA,? were shown to outperform SPEA on
certain test problems. Furthermore, new insights into the behavior of EMO algo-
rithms improved our knowledge about the basic principles and the main factors of
success in EMQ.%7

In this paper, SPEA2 is presented for which we tried to incorporate most recent
results and to eliminate the potential weaknesses of its predecessor (see the corre-
sponding technical report for further details®). In particular, the main differences of
SPEA2 in comparison to SPEA are: i) an improved fitness assignment scheme which
takes for each individual into account how many individuals it dominates and it is
dominated by, ii) a nearest neighbor density estimation technique, and iii) a new
archive truncation methods that guarantees the preservation of boundary solutions.

2 THE SPEA2 ALGORITHM

The main loop of SPEA2 is as follows:
Algorithm 1

Input: N (population size)

N (archive size)

T (mazimum number of generations)
Output: A (nondominated set)

Step 1:  Initialization: Gener@z an initial population Py and create the empty
archive (external set) Py = (. Sett = 0.

Step 2:  Fitness assignment: Calculate fitness values of individuals in Py and P,
(cf. Section 2.1).

Step 3:  Environmental selection: Copy all nondominated individuals in P; and
P, to P,,. If size of P, exceeds N then reduce Py.1 by means of the
truncation operator, otherwise if size of Py, is less than N then fill Py,
with dominated individuals in Py and Py (cf. Section 2.2).

Step 4:  Termination: If t > T or another stopping criterion is satisfied then set A
to the set of decision vectors represented by the nondominated individuals
n Pyyq. Stop.

Step 5:  Mating selection: Perform binary tournament selection with replacement
on Py, in order to fill the mating pool.

Step 6:  Variation: Apply recombination and mutation operators to the mating pool
and set Pyy1 to the resulting population. Increment generation counter
(t=1t+1) and go to Step 2.

In contrast to SPEA, SPEA2 uses a fine-grained fitness assignment strategy which
incorporates density information as will be described in Section 2.1. Furthermore,
the archive size is fixed, i.e., whenever the number of nondominated individuals is
less than the predefined archive size, the archive is filled up by dominated individ-
uals; with SPEA, the archive size may vary over time. In addition, the clustering
technique, which is invoked when the nondominated front exceeds the archive limit,
has been replaced by an alternative truncation method which has similar features
but does not loose boundary points. Details on the environmental selection proce-
dure will be given in Section 2.2. Finally, another difference to SPEA is that only
members of the archive participate in the mating selection process.
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2.1 Fitness Assignment

In Step 2 of the SPEA2 main loop, each individual ¢ in the archive P, and
the population P; is assigned a strength value S(%), representing the number of
solutions it dominates S(2) = |{j | j € P, + Py A1 > j}| where | - | denotes the
cardinality of a set, + stands for multiset union and the symbol > corresponds to
the Pareto dominance relation. On the basis of the S values, the raw fitness R()
of an individual % is calculated R(¢) = ;. p, .5, j»; 5(4). That is the raw fitness
is determined by the strengths of its dominators in both archive and population,
as opposed to SPEA where only archive members are considered in this context.
Please note that fitness is to be minimized here.

In addition, density information is incorporated to discriminate between individ-
uals having identical raw fitness values. The density estimation technique used in
SPEA2 is an adaptation of the k-th nearest neighbor method,? where the density at
any point is a (decreasing) function of the distance to the k-th nearest data point.
Here, we simply take the inverse of the distance to the k-th nearest neighbor as the
density estimate. To be more precise, for each individual 7 the distances (in objec-
tive space) to all individuals j in archive and population are calculated and stored in
a list. After sorting the list in increasing order, the k-th element gives the distance
sought, denoted as o¥. As a common setting, we use k equal to the square root of

the sample size,’ thus, k = \/N + N. Afterwards, the density D(z) corresponding

to 4 is defined by D(i) = 5. In the denominator, two is added to ensure that

its value is greater than zero and that D(i) < 1. Finally, adding D(%) to the raw
fitness value R(%) of an individual ¢ yields its fitness F'(¢) F(2) = R(3) + D(2).

2.2 Environmental Selection

The archive update operation performed in Step 3 of Algorithm 1 works as follows.
First all nondominated individuals, i.e., those which have a fitness lower than one,
are copied to the archive of the next generation Py, = {i | i € P,+ P, AF(i) < 1}.
If the nondominated front fits exactly into the archive (|Py,1| = N) the environ-
mental selection step is completed. Otherwise, there can be two situations: Either
the archive is too small (|P;1| < N) or too large (|Psy1| > N). In the first case,
the best N — |P;, | dominated individuals in the previous archive and population
are copied to the new archive. This can be implemented by sorting the multiset
P, + P; according to the fitness values and copy the first N — | Py, ;| individuals 4
with F'() > 1 from the resulting ordered list to Py, ;. In the second case, when the
size of the current nondominated (multi)set exceeds N, an archive truncation pro-
cedure is invoked which iteratively removes individuals from Py, until |[P;;| = N.
Here, at each iteration that individual 2z is chosen for removal for which ¢ <; 7 for
all j € Py, with

i1<4j & VO<k<|Py : Ufzaf Vv

J0< k < |Pyy :[(V0<l<k : aé:a;-)/\ Uf<0ﬂ

where of denotes the distance of 4 to its k-th nearest neighbor in P;,;. In other
words, the individual which has the minimum distance to another individual is
chosen at each stage; if there are several individuals with minimum distance the tie
is broken by considering the second smallest distances and so forth.
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| Name | Type | Domain | Objective functions
SPH-m!'% 1 | min [—103,10%]" | fi(z) = Di<i<n,iti (z:)? + (z; — 1)?
n = 100 1<j<m, m=23
ZDT6? min [0,1]" fi(x) =1 — exp(—4z;) sin® (67z;)
n =100 fa(z) = g(z) [1 = (fi(2)/9())?]
9(x) =1+9- (i, 2:)/(n=1)""
QV!2 min | [-5,5]" fi@) = (A 37, (27 — 10 cos(2mz;) + 10))7
n = 100 fol@) = (L 37 ((; — 1.5)> = 10 cos(2m(z; — 1.5)) + 10))%
KUR!3 min [-103,10°]" | fi(z) = 2o, (|28 + 5 - sin®(z;) + 3.5828)
n=100 | fi(e) = X715 (1= e OV
KP-750-m' | max | {0,1}" fi(e) =2 i pij st
n = 750 gi(@) =Y zi-wi; <W;, 1<j<m, m=234
pi,; (profit values), w; ; (weight values) randomly chosen

Table 1: Test problems used in this study. The objective functions are given by f;,1 < j < m,
where m denotes the number of objectives and n the number of decision variables.

3 COMPARATIVE CASE STUDY
3.1 Experimental Design

The behavior of SPEA2 is compared to SPEA, NSGA-II and PESA on a number
of test functions. The algorithms are implemented according to their description
in the literature. As the main feature under concern is the fitness assignment and
the selection processes, our implementations only differ in these respects, where the
other operators (recombination, mutation, sampling) remain identical. For each
algorithm we used identical population and archive sizes. The test functions are
summarized in Tab. 1, where both combinatorial and continuous problems were
chosen.

For each algorithm and each problem, 30 runs with different random seeds have
been carried out. For the quality or performance measure we apply a volume-based
approach according to (Zitzler and Thiele, 1999)" with slight modifications. Here, a
reference volume between the origin and an utopia point — defined by the profit sums
of all items in each objective — is taken into account. The aim is to minimize the
fraction of that space, which is not dominated by any of the final archive members.
We consider this as the most appropriate scalar indicator since it combines both
the distance of solutions (towards some utopian trade-off surface) and the spread
of solutions. For each run, we measure the (normalized) size of the nondominated
objective space over time, which leads to a sample of 30 values for each time step in
each experiment.

3.2 Results and Discussion

In all test cases, SPEA2 shows to constitute a significant improvement over its
predecessor SPEA as it reaches better results on all considered problems. As the
box plots in Fig. 1 show, the performance differences increase with the number of
objectives. With four objectives, a clear distinction between NSGA-II and SPEA2
on the one hand and PESA and SPEA on the other hand can be made: Both PESA
and SPEA, which do not guarantee the extreme solutions to be kept in the archive,
appear to stagnate without having reached a well spread distribution of solutions.
SPEA2 and NSGA-II seem to behave very similar on the different problems. In some
cases NSGA-II reaches a broader spread and hence a better value of the performance
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Figure 1: Box plots showing the distribution of the performance values at the end of the 30 runs.
Upper row: SPH-2, SPH-3, ZDT6, and QV. Lower row: KUR, KP-750-2, KP-750-3, and KP-750-4.

measure, while SPEA2 provides a better distribution of points, especially when the
number of objectives increases. PESA, however, tends to have difficulties to keep
the outer solutions on certain test functions.

It is very instructive, however, to see how the performance develops over time,
i.e. with the number of function evaluations. For many problems, PESA appears to
be converging quicker at the beginning, which is probably due to its higher implicit
elitism intensity. Both NSGA-II and SPEA2, which also allow dominated individuals
to maintain a minimum archive size, seem to make use of this increased diversity in
the later stage of the run where they attain a broader distribution and hence better
performance values.

4 CONCLUSIONS

In this study we have presented SPEA2, an improved elitist multi-objective evo-
lutionary algorithm that employs an enhanced fitness assignment strategy compared
to its predecessor SPEA as well as new techniques for archive truncation and density-
based selection. Extensive numerical comparisons of SPEA2 with SPEA and with
PESA and NSGA-II, two other recently proposed algorithms, have been carried out
on various continuous and combinatorial test problems.

The key results of the comparison are:

e SPEA2 performs better that its predecessor SPEA on all problems.

e PESA has fastest convergence, probably due to its higher elitism intensity, but
has difficulties on some problems because it does not always keep the boundary
solutions.
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e SPEA2 and NSGA-II show the best performance overall.

e In higher dimensional objective spaces, SPEA2 seems to have advantages over
PESA and NSGA-IL.
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