
14

Quality Assessment of
Pareto Set Approximations

Eckart Zitzler1, Joshua Knowles2, and Lothar Thiele1

1 ETH Zurich, Switzerland
eckart.zitzler@tik.ee.ethz.ch, thiele@tik.ee.ethz.ch

2 University of Manchester, UK
j.knowles@manchester.ac.uk

Abstract. This chapter reviews methods for the assessment and comparison of
Pareto set approximations. Existing set quality measures from the literature are
critically evaluated based on a number of orthogonal criteria, including invariance
to scaling, monotonicity and computational effort. Statistical aspects of quality as-
sessment are also considered in the chapter. Three main methods for the statistical
treatment of Pareto set approximations deriving from stochastic generating methods
are reviewed. The dominance ranking method is a generalization to partially-ordered
sets of a standard non-parametric statistical test, allowing collections of Pareto set
approximations from two or more stochastic optimizers to be directly compared sta-
tistically. The quality indicator method — the dominant method in the literature
— maps each Pareto set approximation to a number, and performs statistics on the
resulting distribution(s) of numbers. The attainment function method estimates the
probability of attaining each goal in the objective space, and looks for significant
differences between these probability density functions for different optimizers. All
three methods are valid approaches to quality assessment, but give different informa-
tion. We explain the scope and drawbacks of each approach and also consider some
more advanced topics, including multiple testing issues, and using combinations of
indicators. The chapter should be of interest to anyone concerned with generating
and analysing Pareto set approximations.

14.1 Introduction

In many application domains, it is useful to approximate the set of Pareto-
optimal solutions, cf. (Ehrgott and Gandibleux, 2000; Deb, 2001; Coello Coello
et al., 2002). To this end, various approaches have been proposed ranging
from exact methods to randomized search algorithms such as evolutionary
algorithms, simulated annealing, and tabu search (see Chapters 2 and 3).
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With the rapid increase of the number of available techniques, the issue
of performance assessment has become more and more important and has
developed into an independent research topic. As with single objective opti-
mization, the notion of performance involves both the quality of the solution
found and the time to generate such a solution. The difficulty is that in the
case of stochastic optimizers the relationship between quality and time is not
fixed, but may be described by a corresponding probability density function.
Accordingly, every statement about the performance of a randomized search
algorithm is probabilistic in nature. Another difficulty is particular to mul-
tiobjective optimizers that aim at approximating the set of Pareto-optimal
solutions in a scenario with multiple criteria: the outcome of the optimiza-
tion process is usually not a single solution but a set of trade-offs. This not
only raises the question of how to define quality in this context, but also how
to represent the outcomes of multiple runs in terms of a probability density
function.

This chapter addresses both quality and stochasticity. Sections 2–5 are
devoted to the issue of set quality measures; they define properties of such
measures and discuss selected measures in the light of these properties. The
question of how to statistically assess multiple sets generated by a stochas-
tic multiobjective optimizer is dealt with in Sections 6–8. Both aspects are
summarized in Section 9.

The chapter will be of interest to anyone concerned with generating meth-
ods of any type. Those who are interested in a preference based set of solutions
should find this paper useful as well.

14.2 Quantifying Quality General Considerations

14.2.1 Pareto Set Approximations

Assume a general optimization problem (X, Z, f , rel) where X denotes the
decision space, Z = Rk is the objective space, f = (f1, f2, . . . , fk) is the
vector of objective functions, and rel represents a binary relation over Z that
defines a partial order of the objective space, which in turn induces a preorder
of the decision space.1 In the presence of a single objective function (k =
1), the standard relation ’less than or equal’ is generally used to define the
corresponding minimization problem (X,R, (f1),≤). In the case of multiple
objective functions, i.e., k > 1, usually the relation � with z1 � z2 ⇔ ∀i ∈
{1, . . . , k} : z1

i ≤ z2
i is taken; it represents a natural extension of ≤ to Rk and

is also known as weak Pareto dominance. The associated strict order ≺ with
z1 ≺ z2 ⇔ z1 � z2 ∧ ¬ z2 � z1 is often denoted as Pareto dominance, and
instead of z1 ≺ z2 one also says z1 dominates z2. Using this terminology, the

1 A binary relation is called a preorder iff it is reflexive and transitive. A preorder
which is antisymmetric is denoted as partial order.
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Pareto-optimal set comprises the set of decision vectors not dominated by any
other element in the feasible set S ⊆ X .

The formal definition of an optimization problem given above assumes
that only a single solution, any of those mapped to a minimal element, is
sought. However, in a multiobjective setting one is often interested in the
entire Pareto-optimal set rather than in a single, arbitrary Pareto-optimal
solution. With many applications, e.g., engineering designs problems, knowl-
edge about the Pareto-optimal set is helpful and provides valuable information
about the underlying problem. This leads to a different optimization problem
where the goal is to find a set of mutually incomparable solutions (for any two
decision vectors x1,x2, neither weakly dominates the other one), which will
be here denoted as Pareto set approximations; the symbol Ψ stands for the
sets of all Pareto set approximations over X . Accordingly, sets of mutually
incomparable objective vectors are here called Pareto front approximations,
and the set of all Pareto front approximations over Z is represented by Ω.

Now, let (X, Z, f , rel) be the original optimization problem. It can be
canonically transformed into a corresponding set problem (Ψ, Ω, f ′, rel ′) by
extending f and rel in the following manner:

• f ′(E) = {z ∈ Z | ∃x ∈ E : z = f(x)}
• A rel ′B ⇔ ∀z2 ∈ B ∃z1 ∈ A : z1 rel z2

If rel is �, then rel ′ represents the natural extension of weak Pareto dominance
to Pareto front approximations. In the following, we will use the symbols �
and ≺ as for dominance relations on objective vectors and decision vectors
also for Pareto front approximations respectively Pareto set approximations—
it will become clear from the context, which relation is referred to.

14.2.2 Outperformance and Quality Indicators

Suppose we would like to assess the performance of two multiobjective op-
timizers. The question of whether either outperforms the other one involves
various aspects such as the quality of the outcome, the computation time
required, the parameter settings, etc. Sections 2–5 of this chapter focus on
the quality aspect and address the issue of how to compare two (or several)
Pareto set approximations. For the time being, assume that we consider one
optimization problem only and that the two algorithms to be compared are
deterministic, i.e., with each optimizer exactly one Pareto set approximation
is associated; the issue of stochasticity will be treated in later sections.

As discussed above, optimization is about searching in an ordered set. The
partial order rel for an optimization problem (X, Z, f , rel) defines a preference
structure on the decision space: a solution x1 is preferable to a solution x2 iff
f(x1) rel f(x2) and not f(x2) rel f(x1). This preference structure is the basis
on which the optimization process is performed. For the corresponding set
problem (Ψ, Ω, f ′, rel ′), this means that the most natural way to compare two
Pareto set approximations A and B generated by two different multiobjective
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optimizers is to use the underlying preference structure rel ′. In the context
of weak Pareto dominance, there can be four situations: (i) A is better than
B (A � B ∧ B �� A), (ii) B is better than A (A �� B ∧ B � A), (iii) A
and B are incomparable (A �� B ∧ B �� A), or (iv) A and B are indifferent
(A � B ∧ B � A), where ’better’ means the first set weakly dominates the
second, but the second does not weakly dominate the first. These are the types
of statements one can make without any additional preference information.
Often, though, we are interested in more precise statements that quantify the
difference in quality on a continuous scale. For instance, in cases (i) and (ii)
we may be interested in knowing how much better the preferable Pareto set
approximation is, and in case (iii) one may ask whether either set is better
than the other in certain aspects not captured by the preference structure—
this is illustrated in Fig. 14.1. This is crucial for the search process itself, and
almost all algorithms for approximating the Pareto set make use of additional
preference information, e.g., in terms of diversity measures.

For this purpose, quantitative set quality measures have been introduced.
We will use the term quality indicator in the following:

A (unary) quality indicator is a function I : Ψ → R that assigns each
Pareto set approximation a real number.

In combination with the ≤ or ≥ relation on R, a quality indicator I defines
a total order of Ω and thereby induces a corresponding preference structure:
A is preferable to B iff I(A) > I(B), assuming that the indicator values are
to be maximized. That means we can compare the outcomes of two multi-
objective optimizers, i.e., two Pareto set approximations, by comparing the
corresponding indicator values.

Example 1. Let A be an arbitrary Pareto set approximation and consider the
subspace Z ′ of the objective space Z = Rk that is, roughly speaking, weakly
dominated by A. That means any objective vector in Z ′ is weakly dominated
by at least one objective vector in f ′(A).

The hypervolume indicator IH (Zitzler and Thiele, 1999) gives the hyper-
volume of Z ′ (see Fig. 14.2). The greater the indicator value, the better the
approximation set. Note that this indicator requires a reference point rela-
tively to which the hypervolume is calculated.

Considering again Fig. 14.1, it can be seen that the hypervolume indicator re-
veals differences in quality that cannot be detected by the dominance relation.
In the left scenario, IH(A) = 277 and I(B) = 231, while for the scenario in
the middle, IH(A) = 277 and I(B) = 76; in the right scenario, the indicator
values are IH(A) = 277 and IH(B) = 174.2 This advantage, though, comes at
the expense of generality, since every quality indicator represents certain as-
sumptions about the decision maker’s preferences. Whenever IH(A) > IH(B),

2 The objective vector (20, 20) is the reference point.
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Fig. 14.1. Three examples to illustrate the limitations of statements purely based on
weak Pareto dominance. In both the figures on the left, the Pareto set approximation
A dominates the Pareto set approximation B, but in one case the two sets are much
closer together than in the other case. On the right, A and B are incomparable,
but in most situations A will be more useful to the decision maker than B. The
background dots represent the image of the feasible set S in the objective space R2

for a discrete problem.
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Fig. 14.2. Illustration of the hypervolume indicator. In this example, approximation
set A is assigned the indicator value IH(A) = 277; the objective vector (20, 20) is
taken as the reference point.

we can state that A is better than B with respect to the hypervolume indi-
cator; however, the situation could be different for another quality indicator
I ′ that assigns B a better indicator value than A. As a consequence, every
comparison of multiobjective optimizers is not only restricted to the selected
benchmark problems and parameter settings, but also to the quality indica-
tor(s) under consideration. For instance, if we use the hypervolume indicator
in a comparative study, any statement like “optimizer 1 outperforms opti-
mizer 2 in terms of quality of the generated Pareto set approximation” needs



378 E. Zitzler, J. Knowles, and L. Thiele

to be qualified by adding “under the assumption that IH reflects the decision
maker’s preferences”.

Finally, note that the following discussion focuses on unary quality indica-
tors, although an indicator can take in principle an arbitrary number of Pareto
set approximations as arguments. Several quality indicators have been pro-
posed that assign real numbers to pairs of Pareto set approximations, which
are denoted as binary quality indicators (see Hansen and Jaszkiewicz, 1998;
Knowles and Corne, 2002; Zitzler et al., 2003, for an overview). For instance,
the unary hypervolume indicator can be extended to a binary quality indica-
tor by defining IH(A, B) as the hypervolume of the subspace of the objective
space that is dominated by A but not by B.

14.3 Properties of Unary Quality Indicators

Quality indicators serve different goals: they may be used for comparing al-
gorithms, but also during the optimization process as guidance for the search
or as stopping criterion. In principle, one may consider any function from Ω
to R as an indicator, but clearly there are certain properties that need to be
fulfilled in order to make the indicator useful. These properties may vary de-
pending on the purpose: for instance, when comparing several algorithms on
a benchmark problem one may assume that the Pareto-optimal set is known,
while such information is clearly not available in a real-world scenario. In the
following, we will consider four main criteria:

Monotonicity: An indicator I is said to be monotonic iff for any Pareto set ap-
proximation that is compared to another Pareto set approximation holds:
at least as good in terms of the dominance relation implies at least as
good in terms of the indicator values. Formally, this can be expressed as
follows:

∀A, B ∈ Ψ : A � B ⇒ I(A) ≥ I(B)

where � stands for the underlying dominance relation, here weak Pareto
dominance.
Monotonicity guarantees that an indicator does not contradict the partial
order of Ω that is imposed by the weak Pareto dominance relation, i.e.,
consistency with the inherent preference structure of the optimization
problem under consideration is maintained. However, it does not guar-
antee a unique optimum with respect to the indicator values; in other
words, a Pareto set approximation that has the same indicator value as
the Pareto-optimal set not necessarily contains only Pareto-optimal so-
lutions. To this end, a stronger condition is needed which leads to the
property of strict monotonicity:

∀A, B ∈ Ψ : A ≺ B ⇒ I(A) > I(B)
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Currently, the hypervolume indicator is the only strictly monotonic unary
indicator known, (see Zitzler et al., 2007).

Scaling invariance: In practice, the objective functions are often subject to
scaling, i.e., the objective function values undergo a strictly monotonic
transformation. Most common are transformations of the form of
s(f(x)) = (f(x) − fl)/(fu − fl) where fl and fu are lower and upper
bounds respectively for the objective function values such that each ob-
jective vector lies in [0, 1]k. In this context, it may be desirable that an
indicator is not affected by any type of scaling which can be stated as
follows: an indicator is denoted as scaling invariant iff for any strictly
monotonic transformation s : Rk → Rk the indicator values remain un-
affected, i.e., for all A ∈ Ψ the indicator value I(A) is the same inde-
pendently of whether we consider the problem (Ψ, Ω, f ′, rel ′) or the scaled
problem (Ψ, Ω, s◦f ′, rel ′).3 Scaling invariant indicators usually only exploit
the dominance relation among solutions, but not their absolute objective
function values.

Computation effort: A further property that is less easy to formalize addresses
the computational resources needed to compute the indicator value for a
given Pareto set approximation. We here consider the runtime complexity,
depending on the number of solutions in the Pareto set approximation as
well as the number of objectives, as a measure to compare indicators. This
aspect becomes critical, if an indicator is to be used during the search
process; however, even for pure performance assessment there may be
limitations for certain indicators, e.g., if the running time is exponential
in the number of objectives as with the hypervolume indicator (While,
2005).

Additional problem knowledge: Many indicators are parameterized and re-
quire additional information in order to be applied. Some assume the
Pareto-optimal set to be known, while others rely on reference objective
vectors or reference sets. In most cases, the indicator parameters are both
user- and problem-dependent; therefore, it may be desirable to have as
few parameters as possible.

There are many properties one may consider, and the interested reader is
referred to (Knowles, 2002; Knowles and Corne, 2002) for a more detailed
discussion.

3 Alternatively, one may consider a weaker version of scaling invariance which is
based on the order of the indicator values rather than on the absolute values.
More precisely, the elements of Ψ would be sorted according to their indicator
values; if the order remains the same for any type of scaling, then the indicator
under consideration would be called scaling independent.
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14.4 Discussion of Selected Unary Quality Indicators

The unary quality indicators that will be discussed in the following repre-
sent a selection of popular measures; however, the list of indicators is by no
means complete. Furthermore, only deterministic indicators are considered. A
summary of the indicators and properties we consider is given in Table 14.1.

14.4.1 Outer Diameter

The outer diameter measures the distance between the ideal objective vector
and the nadir objective vector of a Pareto set approximation in terms of a
specific distance metric. We here define the corresponding indicator IOD as

IOD(A) = max
1≤i≤n

wi

(

(max
x∈A

fi(x))− (min
x∈A

fi(x))
)

with weights wi ∈ R+. If all weights are set to 1, then the outer diameter
simply provides the maximum extent over all dimensions of the objective
space.

The outer diameter is neither monotonic nor scaling invariant. However, it
is cheap to compute (the runtime is linear in the cardinality of the Pareto set
approximation A) and does not require any additional problem knowledge.
The paramters wi can be used to weight the different objectives, but they are
as such not problem-specific.

14.4.2 Proportion of Pareto-Optimal Objective Vectors Found

Another measure to consider is the number of Pareto-optimal objective vec-
tors that are weakly dominated by the image of a Pareto set approximation
in objective space. The corresponding indicator IPF has been introduced by
Ulungu et al. (1999) as the fraction of the Pareto-optimal front P weakly
dominated by a specific set A ∈ Ψ :

IPF(A) =
{z | ∃x ∈ A : f(x) � z}

|P |
This measure assumes that the Pareto-optimal set resp. the Pareto-optimal
front is known and that the number of optimal objective vectors is finite. The
indicator value can be computed in O(|P | · |A|) time, and they are invariant
to scaling. The indicator is monotonic, but not strictly monotonic.

14.4.3 Cardinality

The cardinality IC(A) of a Pareto set approximation A can be considered
both in decision space and objective space, (see, e.g. Van Veldhuizen, 1999).
In either case, the indicator is not monotonic. However, it is cheap to compute,
scaling invariant, and does not require any additional information.
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Table 14.1. Summary of selected indicators and some of their properties. See ac-
companying text for full details

Indicator Monotonicity Scaling
invariance

Computational
effort

Additional
problem
knowledge
needed

Outer Diameter ✗ ✗ linear time none
Proportion of Pareto
Optimal Vectors
Found

not strictly invariant quadratic all Pareto op-
tima

Cardinality ✗ invariant linear time none
Hypervolume strictly mono-

tonic
✗ exponential in k needs upper

bounding
vector

Completeness not strictly invariant anytime as it is
based on sam-
pling, but effort
grows rapidly
with decision
space dimension

none

Epsilon Family not strictly ✗ quadratic reference set
D Family not strictly ✗ quadratic reference set
R Family not strictly ✗ quadratic reference set

and point
Uniformity Measures ✗ ✗ quadratic varies

14.4.4 Hypervolume Indicator

The hypervolume indicator IH, which was introduced in (Zitzler and Thiele,
1998), gives the volume of the portion of the objective space that is weakly
dominated by a specific Pareto set approximation. It can be formally defined
as

I∗H(A) :=
∫ zupper

zlower

αA(z)dz

where zlower and zupper are objective vectors representing lower resp. upper
bounds for the portion of the objective space within which the hypervolume
is calculated, and where the function αA is the attainment function (Grunert
da Fonseca et al., 2001) for A

αA(z) :=
{

1 if ∃x ∈ A : f(x) � z
0 else

that returns for an objective vector a 1 if and only if it is weakly dominated
by A. In practice, the lower bound zlower is not required to calculate the
hypervolume for a set A. The hypervolume indicator is to be maximized.
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The hypervolume indicator is currently the only unary indicator known to
be strictly monotonic. This comes at the cost of high computational cost: the
best known algorithms for computing the hypervolume have running times
which are exponential in the number of objectives (see While, 2005; While
et al., 2005, 2006; Fonseca et al., 2006; Beume and Rudolph, 2006). Further-
more, a reference point, an upper bound, needs to be specified; the indicator
is sensitive to the choice of this upper bound, i.e. the ordering of Pareto set
approximations induced by the indicator is affected by it, so the indicator is
not scaling invariant by the above definition. Note: preference information can
be incorporated into the hypervolume indicator, so that more emphasis can
be placed on certain parts of the Pareto front than others (e.g. the middle,
the extremes, etc.), whilst maintaining monotonicity (Zitzler et al., 2007).

14.4.5 Completeness Indicator

The completeness indicator ICP was introduced in (Lotov et al., 2002, 2004)
and goes back to the concept of completeness as defined by (Kamenev and
Kondtrat’ev, 1992; Kamenev, 2001). The indicator gives the probability that
a randomly chosen solution from the feasible set S is weakly dominated by a
given Pareto set approximation A, i.e.,

ICP(A) = Prob [A � {U}] (14.1)

where U is a random variable representing the random choice from S. Pro-
vided that U follows a uniform probability density function, the indicator
value ICP(A) can also be interpreted as the portion of the feasible set that
is dominated by A. As such, the completeness indicator is strongly related to
the hypervolume indicator; the difference is that the former takes the decision
space into account, while the latter considers the objective space only.

Normally, one cannot compute the completeness directly. For this reason,
the indicator values can be estimated by drawing samples from the feasible
set and computing the completeness for these samples. As shown by Lotov et
al. (Lotov et al., 2004), the confidence interval for the true value can be eval-
uated with any reliability, given sufficiently large samples. Furthermore, there
is an extension of this indicator, namely Iε

CP(A), where another dominance
relation, e.g., the ε-dominance relation, �ε, as defined above, is considered
which reflects a specific ε-neighborhood of a Pareto set approximation in the
objective space, see (Lotov et al., 2002, 2004) for details.

The completeness indicator is scaling-invariant as it does not rely on the
absolute objective function values. Furthermore, the exact completeness in-
dicator is as the hypervolume indicator strictly monotonic. However, as in
practice sampling is necessary to estimate the exact indicator values, the in-
dicator function based on estimates is monotonic (if always the same sample
is used to compare two Pareto set approximation), while strict monotonicity
cannot be ensured in general. Experimental studies have shown that the indi-
cator estimates are effective only for relatively low-dimensional decision spaces
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(not more than a dozen decision variables) and for sufficiently slowly varying
objective functions (Lotov et al., 2002, 2004). For a high-dimensional decision
space, the Pareto-optimal set cannot be found via random point generation if
it has an extremely small volume. For this reason, a generalized completeness
estimate for the quality of approximation has been proposed for the case of a
large number of variables and rapidly varying functions, see (Berezkin et al.,
2006).

14.4.6 Epsilon Indicator Family

The epsilon indicator family has been introduced in (Zitzler et al., 2003)
and comprises a multiplicative and an additive version—both exist in unary
and binary form; the definition is closely related to the notion of epsilon effi-
ciency (Helbig and Pateva, 1994). The binary multiplicative epsilon indicator,
Iε(A, B), gives the minimum factor ε by which objective vector associated with
B can be multiplied such that the resulting transformed Pareto front approx-
imation is weakly dominated by the Pareto front approximation represented
by A:

Iε(A, B) = inf
ε∈R
{∀x2 ∈ B ∃x1 ∈ A : x1 �ε x2}. (14.2)

This indicator relies on the ε-dominance relation, �ε, defined as:

x1 �ε x2 ⇐⇒ ∀i ∈ 1..n : fi(x1) ≤ ε · fi(x2) (14.3)

for a minimization problem, and assuming that all points are positive in all
objectives. On this basis, the unary multiplicative epsilon indicator, I1

ε (A) can
then be defined as:

I1
ε (A) = Iε(A, R), (14.4)

where R is any reference set of points. An equivalent unary additive epsilon
indicator I1

ε+ is defined analogously, but is based on additive ε-dominance:

x1 �ε+ x2 ⇐⇒ ∀i ∈ 1..n : fi(x1) ≤ ε + fi(x2). (14.5)

Both unary indicators are to be minimized. An indicator value less than or
equal to 1 (I1

ε ) respectively 0 (I1
ε+) implies that A weakly dominates the

reference set R.
The unary epsilon indicators are monotonic, but not strictly monotonic.

They are sensitive to scaling and require a reference set relatively to which the
epsilon value is calculated. For any finite Pareto set approximation A and any
finite reference set R, the indicator values are cheap to compute; the runtime
complexity is of order O(n · |A| · |R|).

14.4.7 The D Indicator Family

The D indicators are similar to the additive epsilon indicator and measure
the average resp. worst case component-wise distance in objective space to
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the closest solution in a reference R, as suggested in (Czyzak and Jaskiewicz,
1998). Czyzak and Jaskiewicz (1998) introduced two versions, ID1 and ID2;
the first considers the average distance regarding the set R:

ID1(A) =
1
|R|

∑

x2∈R

min
x1∈A

max
1≤i≤k

(
0, wi(fi(x1)− fi(x2))

)

where the wi are weights associated with the specific objective functions.
Alternatively, the worst case distance may be considered:

ID2(A) = max
x2∈R

min
x1∈A

max
1≤i≤k

(
0, wi(fi(x1)− fi(x2))

)

As with the epsilon indicator family, the D indicators are monotonic, but
not strictly monotonic, scaling dependent, and require a reference set. The
running time complexity is of order O(n · |A| · |R|).

14.4.8 The R Indicator Family

The R indicators proposed in (Hansen and Jaszkiewicz, 1998) can be used to
assess and compare Pareto set approximations on the basis of a set of utility
functions. Here, a utility function u is defined as a mapping from the set Rk

of k-dimensional objective vectors to the set of real numbers:

u : Rk %→ R.

Now, suppose that the decision maker’s preferences are given in terms of a
parameterized utility function uλ and a corresponding set Λ of parameters. For
instance, uλ could represent a weighted sum of the objective values, where λ =
(λ1, . . . λn) ∈ Λ stands for a particular weight vector. Hansen and Jaszkiewicz
(1998) propose several ways to transform such a family of utility functions
into a quality indicator; in particular, the binary IR2 and IR3 indicators are
defined as:4

IR2(A, B) =
∑

λ∈Λ u∗(λ, A) − u∗(λ, B)
|Λ| ,

IR3(A, B) =
∑

λ∈Λ[u∗(λ, B)− u∗(λ, A)]/u∗(λ, B)
|Λ| .

4 The full formalism described in (Hansen and Jaszkiewicz, 1998) also considers
arbitrary sets of utility functions in combination with a corresponding probabil-
ity distribution over the utility functions. This is a way of enabling preference
information regarding different parts of the Pareto front to be accounted for, e.g.
more utility functions can be placed in the middle of the Pareto front in order to
emphasise that region. The interested reader is referred to the original paper for
further information.
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where u∗ is the maximum value reached by the utility function uλ with weight
vector λ on an Pareto set approximation A, i.e., u∗(λ, A) = maxx∈A uλ(f(x)).
Similarly to the epsilon indicators, the unary R indicators are defined on the
basis of the binary versions by replacing one set by an arbitrary, but fixed
reference set R: I1

R2(A) = IR2(R, A) and I1
R3(A) = IR3(A, R). The indicator

values are to be minimized.
With respect to the choice of the parameterized utility function uλ, there

are various possibilities. A first utility function u that can be used in the above
is a weighted linear function

uλ(z) = −
∑

j∈1..n

λj |z∗j − zj |, (14.6)

where z∗ is the ideal point, if known, or any point that weakly dominates all
points in the corresponding Pareto front approximation. (When comparing
approximation sets, the same z∗ must be used each time).

A disadvantage of the use of a weighted linear function means that points
not on the convex hull of the Pareto front approximation are not rewarded.
Therefore, it is often preferable to use a nonlinear function such as the
weighted Tchebycheff function,

uλ(z) = − max
j∈1..n

λj |z∗j − zj |. (14.7)

In this case, however, the utility of a point and one which weakly dominates
it might be the same. To avoid this, it is possible to use the combination of
linear and nonlinear functions: the augmented Tchebycheff function,

uλ(z) = −
⎛

⎝max
j∈1..n

λj |z∗j − zj|+ ρ
∑

j∈1..n

|z∗j − zj|
⎞

⎠ , (14.8)

where ρ is a sufficiently small positive real number. In all cases, the set Λ
of weight vectors should contain a sufficiently large number of uniformly
dispersed normalized weight combinations λ with ∀i ∈ 1..n : λn ≥ 0 ∧∑

j=1..n λj = 1.
The R indicators are monotonic, but not strictly, scaling dependent and

require both a reference set as well as an ideal objective vector. The runtime
complexity for computing the indicator values is of order O(n · |Λ| · |A| · |R|).

14.4.9 Uniformity Measures

Various indicators have been proposed that measure how well the solutions
of a Pareto set approximations are distributed in the objective space; often,
the main focus is on a uniform distribution. To this end, one can consider the
standard deviation of nearest neighbor distances, (see, e.g. Schott, 1995) and
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(Deb et al., 2002). Further examples can be found in (Knowles, 2002; Knowles
and Corne, 2002).

In general, uniformity measures are not monotonic and not scaling invari-
ant. The computation time required to compute the indicator values is usually
quadratic in the cardinality of the Pareto set approximation under consider-
ation, i.e., O(n · |A|2). Most measures of this class do not require additional
information, but some involve certain problem-dependent parameters.

14.5 Indicator Combinations and Binary Indicators

The ideal quality indicator is strictly monotonic, scaling invariant, cheap to
compute and does not require any additional information. However, it can be
seen from the discussion above that such an ideal indicator does not exist.
For instance, all monotonic unary quality indicators require a reference point
and/or a reference set. The only strictly monotonic indicator currently known,
the hypervolume indicator, is by far the most computationally expensive in-
dicator. An obvious way to circumvent some of these problems is to combine
multiple indicators. One has to define how exactly the resulting information
is combined, for instance, one may consider a sequence of indicators. Suppose
we would like to combine the epsilon indicator and the hypervolume indicator:
one may say A is preferable to B if either the epsilon value for A is better
or the epsilon values are identical and the hypervolume value for A is better.
The resulting indicator combination would be strictly monotonic, but in av-
erage much less expensive than the hypervolume computation alone because
in many cases the decision can be already made on the basis of the epsilon
indicator. Another possibility is the use of binary quality indicators; see (Zit-
zler et al., 2003) for a detailed discussion. Here, both scaling invariance and
strict monotonicity can be achieved at the same time, e.g., with the coverage
indicator (Zitzler and Thiele, 1998).

14.6 Stochasticity: General Considerations

So far, we have assumed that each algorithm under consideration always gen-
erates the same Pareto set approximation for a specific problem. However,
many multiobjective optimizers are variants of randomized search algorithms
and therefore stochastic in nature. If a stochastic multiobjective optimizer is
applied several times to the same problem, each time a different Pareto set ap-
proximation may be returned. In this sense, with each randomized algorithm
a random variable is associated whose possible values are Pareto Set approx-
imations, i.e., elements of Ψ ; the underlying probability density function is
usually unknown.

One way to estimate this probability density function is by means of the-
oretical analysis. Since this approach is infeasible for many problems and al-
gorithms used in practice, empirical studies are common in the context of the
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performance assessment of multiobjective optimizers. By running a specific
algorithm several times on the same problem instance, one obtains a sam-
ple of Pareto set approximations. Now, comparing two stochastic optimizers
basically means comparing the two corresponding samples of Pareto set ap-
proximations. This leads to the issue of statistical hypothesis testing. While in
the deterministic case one can state, e.g., that “optimizer 1 achieves a higher
hypervolume indicator value than optimizer 2”, a corresponding statement in
the stochastic case could be that “the expected hypervolume indicator value
for algorithm 1 is greater than the expected hypervolume indicator value for
algorithm 2 at a significance level of 5%”.

In principle, there exist two basic approaches in the literature to analyze
two or several samples of Pareto set approximations statistically. The more
popular approach first transforms the samples of Pareto set approximations
into samples of real values using quality indicators; then, the resulting sam-
ples of indicator values are compared based on standard statistical testing
procedures.

Example 2. Consider two hypothetical stochastic multiobjective optimizers
and assume that the outcomes of three independent optimization runs are
as depicted in Fig. 14.3. If we use the hypervolume indicator with the refer-
ence point (20, 20), we obtain two samples of indicator values: (277, 171, 135)
and (277, 64, 25). These indicator value samples can then be compared and
differences can be subjected to statistical testing procedures.

The alternative approach, the attainment function method, summarizes a
sample of Pareto set approximations in terms of a so-called empirical at-
tainment function. To explain the underlying idea, suppose that a certain
stochastic multiobjective optimizer is run once on a specific problem. For
each objective vector z in the objective space, there is a certain probability
p that the resulting Pareto set approximation contains an element x such
f(x) � z. We say p is the probability that z is attained by the optimizer. The
attainment function gives for each objective vector z in the objective space
the probability that z is attained in one optimization run of the considered
algorithm. As before, the true attainment function is usually unknown, but it
can be estimated on the basis of the approximation set samples: one simply
counts the number of approximation sets by which each objective vector is
attained and normalizes the resulting number with the overall sample size.
The attainment function is a first order moment measure, meaning that it
estimates the probability that z is attained in one optimization run of the
considered algorithm independently of attaining any other z. For the consid-
eration of higher order attainment functions, Grunert da Fonseca et al. (2001)
have developed corresponding statistical testing procedures.

Example 3. Consider Fig. 14.3. For the scenario on the right, the three Pareto
front approximations cut the objective space into four regions: the upper right
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Fig. 14.3. Hypothetical outcomes of three runs for two different stochastic optimiz-
ers (left and right). The numbers in the figures give the relative frequencies according
to which the distinct regions in the objective space were attained.

region is attained in all of the runs and therefore is assigned a relative fre-
quency of 1, the lower left region is attained in none of the runs, and the re-
maining two regions are assigned relative frequencies of 1/3 and 2/3 because
they are attained in one respectively two of the three runs. In the scenario
on the left, the objective space is partitioned into six regions; the relative
frequencies are determined analogously as shown in the figure.

A third approach to statistical analysis of approximation sets consists in rank-
ing the obtained approximations by means of the dominance relation, in anal-
ogous fashion to the way dominance-based fitness assignment ranks objective
vectors in evolutionary multiobjective optimization. Basically, for each Pareto
set approximation generated by one optimizer it is computed by how many
Pareto set approximations produced by another optimizer it is dominated. As
a result, one obtains, for each algorithm, a set of ranks and can statistically
verify whether the rank distributions for two algorithms differ significantly or
not. We call this method, dominance ranking.

Example 4. To compare the outcomes of the two hypothetical optimizers de-
picted in Fig. 14.3, we check for each pair consisting of one Pareto set approx-
imation of the first optimizer and one Pareto set approximation of the second
optimizer whether either is better or not. For the Pareto front approximation
represented by the diamond on the left hand side, none of the three Pareto
front approximations on the right is better and therefore it is assigned the
lowest rank 0. The Pareto front approximation associated with the diamond
on the right hand side is worse than all three Pareto front approximations
on the left and accordingly its rank is 3. Overall, the resulting rank distri-
butions are (0, 0, 1) for the algorithm on the left hand side and (0, 2, 3) for
the algorithm on the right hand side. A special statistical test can be used to
determine whether the two rank distributions are significantly different.
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14.7 Sample Transformations

The three comparison methodologies outlined in the previous section have in
common that the sample of approximation sets associated with an algorithm
is first transformed into another representation—specifically, a sample of indi-
cator values, an empirical attainment function, or a sample of ranks—before
the statistical testing methods are applied. In the following, we will review
each of the different types of sample transformations in greater detail (but
now considering the dominance ranking first); the issue of statistical testing
will be covered in Section 14.8.

14.7.1 Dominance Ranking

Principles and Procedure

Suppose that we wish to compare the quality of Pareto set approximations
generated by two stochastic multiobjective optimizers, where A1, A2, . . . , Ar

represent the approximations generated by the first optimizer in r runs,
while B1, B2, . . . , Bs denote the approximations generated by the second opti-
mizer in s runs. Using the preference structure of the underlying set problem
(Ψ, Ω, f ′, rel ′), one can now compare all Ai with all Bj and thereby assign a
figure of merit or a rank to each Pareto set approximation, similarly to the way
that dominance-based fitness assignment works in multiobjective evolution-
ary algorithms. In principle, there are several ways to assign each Pareto set
approximation a rank on the basis of a dominance relation, e.g., by counting
the number of sets by which a specific approximation is dominated (Fonseca
and Fleming, 1993) or by performing a nondominated sorting on the Pareto
set approximations under considerations. Here, the former approach in com-
bination with the extended weak Pareto dominance �, cf. Section 14.2 on
Page 374, is preferred as it produces a finer-grained ranking, with fewer ties,
than nondominated sorting:

rank(Ai) = |{B|B ∈ {B1, . . . , Bs} ∧B ≺ Ai}|. (14.9)

The ranks for B1, . . . , Bs are determined analogously. The lower the rank, the
better the corresponding Pareto set approximation with respect to the entire
collection of sets associated with the other optimizer.

The result of this procedure is that each Ai and Bj is associated with
a figure of merit. Accordingly, the samples of Pareto set approximations as-
sociated with each algorithm have been transformed into samples of ranks:
(rank(A1), rank(A2), . . . , rank(Ar)) and (rank(B1), rank(B2), . . . , rank(Bs)).

An example performance comparison study using the dominance ranking
procedure can be found in (Knowles et al., 2006).
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Discussion

The dominance ranking approach relies on the concept of Pareto dominance
and some ranking procedure only, and thus yields quite general statements
about the relative performance of the considered optimizers, fairly indepen-
dently of any preference information. Thus, we recommend this approach to
be the first step in any comparison: if one optimizer is found to be significantly
better than the other by this procedure, then it is better in a sense consistent
with the underlying preference structure. It may be interesting and worthwhile
to use either quality indicators or the attainment function to characterize fur-
ther the differences in the distributions of the Pareto set approximations, but
these methods are not needed to conclude which of the stochastic optimizers
generates the better sets, if a significant difference can be demonstrated using
the ranking of approximation sets alone.

14.7.2 Quality Indicators

Principles and Procedures

As stated earlier, a unary quality indicator I is defined as a mapping from Ψ
to the set of real numbers. The order that I establishes on Ω is supposed to
represent the quality of the Pareto set approximations. Thus, given a pair of
approximations, A and B, the difference between their corresponding indicator
values I(A) and I(B) should reveal a difference in the quality of the two sets.
This not only holds for the case that either set is better, but also when A and B
are incomparable. Note that this type of information goes beyond pure Pareto
dominance and represents additonal knowledge; we denote this knowledge as
preference information.

Discussion

Using unary quality indicators in a comparative study is attractive as it trans-
forms a sample of approximation sets into a sample of reals for which standard
statistical testing procedures exist, cf. Section 14.8. In contrast to the dom-
inance ranking approach, it is also possible to make quantitative statements
about the differences in quality, even for incomparable Pareto set approxi-
mations. However, this comes at the cost of generality: every unary quality
indicator represents specific preference information. Accordingly, any state-
ment of the type ‘algorithm A outperforms algorithm B’ needs to be qualified
in the sense of ‘with respect to quality indicator I’—the situation may be
different for another indicator.
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14.7.3 Empirical Attainment Function

Principles and Procedures

The central concept in this approach is the notion of an attainment function.
Since the multiobjective optimizers that we consider may be stochastic, the
result of running the optimizer can be described by a distribution. Because the
optimizer returns a Pareto set approximation in any given run, the distribution
can be described in the objective space by a random set Z of random objective
vectors z̆j , with the cardinality of the set, m, also random, as follows:

Z = {z̆j ∈ Rk, j = 1, . . . , m}, (14.10)

where k is the number of objectives of the problem. The attainment function
is a description of this distribution based on the notion of goal-attainment:
A goal, here meaning an objective vector, is attained whenever it is weakly
dominated by the Pareto front approximation returned by the optimizer. It is
defined by the function αZ(.) : Rn %→ [0, 1] with

αZ(z) = P (z̆1 � z ∨ z̆2 � z ∨ . . . ∨ z̆m � z) (14.11)
= P (Z � {z}) (14.12)
= P (that the optimizer attains goal z in a single run), (14.13)

where P (.) is the probability density function. The attainment function is a
first order moment measure, and can be seen as a mean-measure for the set Z.
Thus, it describes the location of the Pareto set approximation distribution;
higher order moments are needed if the variability across runs is to be assessed,
and to assess dependencies between the probabilities of attaining two or more
goals in the same run (see Fonseca et al., 2005).

The attainment function can be estimated from a sample of r independent
runs of an optimizer via the empirical attainment function (EAF) defined as

αr(z) =
1
r

r∑

i=1

I(f ′(Ai) � {z}), (14.14)

where Ai is the ith Pareto set approximation (run) of the optimizer and I(.)
is the indicator function, which evaluates to one if its argument is true and
zero if its argument is false. In other words, the EAF gives for each objective
vector in the objective space the relative frequency that it was attained, i.e.,
weakly dominated by an Pareto front approximation, with respect to the r
runs.

The outcomes of two optimizers can be compared by performing a corre-
sponding statistical test on the resulting two EAFs, as will be explained in
Section 14.8.4. In addition, EAFs can also be used for visualizing the out-
comes of multiple runs of an optimizer. For instance, one may be interested in
plotting all the goals that have been attained (independently) in 50% of the
runs. This is defined in terms of a k%-attainment set :
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A Pareto set approximation A is called the k%-attainment set of an
EAF αr(z), iff the corresponding Pareto front approximation weakly
dominates exactly those objective vectors that have been attained in
at least k percent of the r runs. Formally,

∀z ∈ Z : αr(z) ≥ k/100⇔ f ′(A) � {z} (14.15)

We can then plot the attainment surface of such an approximation set, defined
as:

An attainment surface of a given Pareto set approximation A is the
union of all tightest goals that are known to be attainable as a result
of A. Formally, this is the set {z ∈ Rk | f ′(A) � z∧ � ∃z2 ∈ Rk :
f ′(A) � z2 ≺ z}.

Roughly speaking, then, the k%-attainment surface divides the objective space
in two parts: the goals that have been attained and the goals that have not
been attained with a frequency of at least k percent.

Example 5. Suppose a stochastic multiobjective optimizer returns the Pareto
front approximations depicted in Fig. 14.4 for five different runs on a biobjec-
tive optimization problem. The corresponding attainment surfaces are shown
in Fig. 14.5; they summarize the underlying empirical attainment function.

Discussion

The attainment function approach distinguishes itself from the dominance
ranking and indicator approaches by the fact that the transformed samples are
multidimensional, i.e., defined on Z and not on R. Thereby, less information is
lost by the transformation, and in combination with a corresponding statisti-
cal testing procedure detailed differences can be revealed between the EAFs of
two algorithms (see Section 14.8). However, the approach is computationally
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Fig. 14.4. A plot showing five Pareto front approximations. The visual evaluation
is difficult, although there are only a few points per set, and few sets.
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expensive and therefore only applicable in the case of a few objective func-
tions. Concerning visualization of EAFs, recently, an approximate algorithm
has been presented by Knowles (2005) that computes a given k%-attainment
surface only at specified points on a grid and thereby achieves considerable
speedups in comparison with the exact calculation of the attainment surface
defined above.

14.8 Statistical Testing

14.8.1 Fundamentals

The previous section has described three different transformations that can
be applied to a sample of Pareto set approximations generated from multiple
runs of an optimizer. The ultimate purpose of generating the samples and
applying the transformations is to allow us to (a) describe and (b) make
inferences about the underlying random approximation set distributions of
the (two or more) optimizers, thus enabling us to compare their performance.

It is often convenient to summarise a random sample from a distribution
using descriptive statistics such as the mean and variance. The mean, median
and mode are sometimes referred to as first order moments of a distribution,
and they describe or summarise the location of the distribution on the real
number line. The variance, standard deviation, and inter-quartile range are
known as second-order moments and they describe the spread of the data.
Using box-plots (Chambers et al., 1983) or tabulating mean and standard
deviation values are useful ways of presenting such data.
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Statistical Inferences

Descriptive statistics are limited, however, and should usually be given only
to supplement any statistical inferences that can be made from the data. The
standard statistical inference we would like to make, if it is true, is that one
optimizer’s underlying Pareto set approximation distribution is better than
another one’s.5 However, we cannot determine this fact definitively because we
only have access to finite-sized samples of Pareto set approximations. Instead,
it is standard practice to assume that the data is consistent with a simpler
explanation known as the null hypothesis, H0, and then to test how likely
this is to be true, given the data. H0 will often be of the form ‘samples A
and B are drawn from the same distribution’ or ‘samples A and B are drawn
from distributions with the same mean value’. The probability of obtaining a
finding at least as ‘impressive’ as that obtained, assuming the null hypothesis
is true, is called the p-value and is computed using an inferential statistical
test. The significance level, often denoted as α, defines the largest acceptable
p-value and represents a threshold that is user-defined. A p-value lower than
the chosen significance level α then signifies that the null hypothesis can be
rejected in favour of an alternative hypothesis, HA, at a significance level of α.
The definition of the alternative hypothesis usually takes one of two forms. If
HA is of the form ‘sample A comes from a better distribution than sample B’
then the inferential test is a one-tailed test. If HA does not specify a prediction
about which distribution is better, and is of the form ‘sample A and sample B
are from different distributions’ then it is a two-tailed test. A one-tailed test
is more powerful than a two-tailed test, meaning that for a given alpha value,
it rejects the null hypothesis more readily in cases where it is actually false.

Non-parametric Statistical Inference: Rank and Permutation Tests

Some inferential statistical tests are based on assuming the data is drawn
from a distribution that closely approximates a known distribution, e.g. the
normal distribution or Student’s t distribution. Such known distributions are
completely defined by their parameters (e.g. the mean and standard devia-
tion), and tests based on these known distributions are thus termed paramet-
ric statistical tests. Parametric tests are powerful—that is, the null hypothesis
is rejected in most cases where it is indeed false—because even quite small
differences between the means of two normal distributions can be detected
accurately. However, unfortunately, the assumption of normality cannot be
theoretically justified for stochastic optimizer outputs, in general, and it is
difficult to empirically test for normality with relatively small samples (less
than 100 runs). Therefore, it is safer to rely on nonparametric tests (Conover,
1999), which make no assumptions about the distributions of the variables.

5 Most statistical inferences are formulated in terms of precisely two samples, in
this way.
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Two main types of nonparametric tests exist: rank tests and permutation
tests. Rank tests pool the values from several samples and convert them into
ranks by sorting them, and then employ tables describing the limited number
of ways in which ranks can be distributed (between two or more algorithms)
to determine the probability that the samples come from the same source.
Permutation tests use the original values without converting them to ranks
but estimate the likelihood that samples come from the same source explicitly
by Monte Carlo simulation. Rank tests are the less powerful but are also less
sensitive to outliers and computationally cheap. Permutation tests are more
powerful because information is not thrown away, and they are also better
when there are many tied values in the samples, however they can be expensive
to compute for large samples.

In the following, we describe selected methods for nonparametric infer-
ence testing for each of the different transformations. We follow this with a
discussion of issues relating to matched samples, multiple inference testing,
and assessing worst- and best-case performance.

14.8.2 Comparing Samples of Dominance Ranks

Dominance ranking converts the samples of approximation sets from two or
more optimizers into a sample of dominance ranks. A test statistic is computed
from these ranks by summing over the ranks in each of the two samples and
taking the difference of these sums. In order to determine whether the value of
the test statistic is significant, a permutation test must be used. The standard
Mann-Whitney rank sum test and tables (Conover, 1999) cannot be used here
because the rank distributions are affected by the fact that the sets are par-
tially ordered (rather than totally ordered numbers). Thus, to compute the
null distribution, the assignment of the Pareto set approximations to the opti-
mizers must be permuted. Basically, the set {A1, A2, . . . , Ar, B1, B2, . . . , Bs}
is partitioned into one set of r approximations and another set of s approx-
imations; for each partitioning the difference between the rank sums can be
determined, finally yielding a distribution of rank sum differences. Details for
this statistical testing procedure are given in (Knowles et al., 2006).

14.8.3 Comparing Sample Indicators Values

The use of a quality indicator reduces the dimension of a Pareto set approxi-
mation to a single figure of merit. One of the main advantages, and underly-
ing motivations, for using indicators is that this reduction to one dimension
allows statistical testing to be carried out in a relatively straightforward man-
ner using standard univariate statistical tests, i.e. as is done when comparing
best-of-population fitness values (or equivalents) in single-objective algorithm
comparisons. Here, the Mann-Whitney rank sum test or Fisher’s permuta-
tion test can be used (Conover, 1999); the Kruskal-Wallis test may be more
appropriate if multiple (more than two) algorithms are to be compared.
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In the case that a combination of multiple quality indicators is considered
(see Page 386), slightly different preferences are assessed by each of the indi-
cators and this may help to build up a better picture of the overall quality
of the Pareto set approximations. On the other hand, using several indicators
does bring into play multiple testing issues if the distributions from different
indicators are being tested independently, cf. Section 14.8.5.

14.8.4 Comparing Empirical Attainment Functions

The EAF of an optimizer is a generalization of a univariate empirical cumula-
tive distribution function (ECDF) (Grunert da Fonseca et al., 2001). In order
to test if two ECDFs are different, the Kolmogorov-Smirnov (KS) test can
be applied. This test measures the maximum difference between the ECDFs
and assesses the statistical significance of this difference. An algorithm that
computes a KS-like test for two EAFs is described in (Shaw et al., 1999).
The test only determines if there is a significant difference between the two
EAFs, based on the maximum difference. It does not determine whether one
algorithm’s entire EAF is ‘above’ the other one:

∀z ∈ Z, αA
r (z) ≥ αB

r (z),

or not. In order to probe such specific differences, one must use methods for
visualizing the EAFs.

For two-objective problems, plotting significant differences in the empirical
attainment functions of two optimizers, using a pair of plots, can be done
by colour-coding either (i) levels of difference in the sample probability, or
(ii) levels of statistical significance of a difference in sample probability, of
attaining a goal, for all goals. Option (ii) is more informative and can be
computed from the fact that there is a correspondence between the statistical
significance level α of the KS-like test and the maximum distance between
the EAFs that needs to be exceeded. Thus the KS-like test can be run for
different selected α values to compute these different distances. Then, the
actual measured distances between the EAFs at every z can be converted to
a significance level.

An example of such a pair of plots is shown in Figure 14.6. This kind
of plot has been used to good effect in (López-Ibáñez et al., 2006). Note
also that Fonseca et al. (2005) have devised plots that can indicate second-
order information, i.e. the probability of an optimizer attaining pairs of goals
simultaneously.

14.8.5 Advanced Topics

Matched Samples

When comparing a pair of stochastic optimizers, two slightly different sce-
narios are possible. In one case, each run of each optimizer is a completely
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Fig. 14.6. Individual differences between the probabilities of attaining different
goals on a two-objective minimization problem with optimizer O1 and optimizer
O2, shown using a greyscale plot. The grand best and worst attainment surfaces
(the same in both plots) indicate the borders beyond which the goals are never
attained or always attained, computed from the combined collection of Pareto set
approximations. Differences in the frequency with which certain goals are met by
the respective algorithms O1 and O2 are then represented in the region between
these two surfaces. In the left plot, darker regions indicate goals that are attained
more frequently by O1 than by O2. In the right plot, the reverse is shown. The
intensity of the shading can correspond to either the magnitude of a difference in
the sample probabilities, or to the level of statistical significance of a difference in
these probabilities.

independent random sample; that is, the initial population (if appropriate),
the random seed, and all other random variables are drawn independently
and at random on each run. In the other case, the influence of one or more
random variables is partially removed from consideration; e.g. the initial pop-
ulation used by the two algorithms may be matched in corresponding runs, so
that the runs (and hence the final quality indicator values) should be taken as
pairs. In the former scenario, the statistical testing will reveal, in quite general
terms, whether there is a difference in the distributions of indicator values re-
sulting from the two stochastic optimizers, from which a general performance
difference can be inferred. In the latter scenario—taking the particular case
where initial populations are matched—the statistical testing reveals whether
there is a difference in the indicator value distributions given the same initial
population, and the inference in this case relates to the optimizer’s ability to
improve the initial population. While the former scenario is more general, the
latter may give more statistically significant results.
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If matched samples have been collected, then the Wilcoxon signed rank
test (Conover, 1999) or Fisher’s matched samples test (Conover, 1999) can
be used instead of the Mann-Whitney rank sum test respectively Fisher’s
permutation test.

Multiple Testing

Multiple testing (Benjamini and Hochberg, 1995; Bland and Altman, 1995;
Miller, 1981; Perneger, 1998; Westfall and Young, 1993) occurs when one
wishes to consider several statistical hypotheses (or comparisons) simultane-
ously. When considering multiple tests, the significance of each single result
needs to be adjusted to account for the fact that, as more tests are considered,
it becomes more and more likely that some (unspecified) result will give an
extreme value, resulting in a rejection of the null hypothesis for that test.

For example, imagine we carry out a study consisting of twenty different
hypothesis tests, and assume that we reject the null hypothesis of each test if
the p-value is 0.05 or less. Now, the chance that at least one of the inferences
will be a type-1 error (i.e. the null hypothesis is wrongly rejected) is 1 −
(0.9520) & 64%, when assuming that the null hypothesis was true in every
case. In other words, more often than not, we wrongly claim a significant
result (on at least one test). This situation is made even worse if we only
report the cases where the null hypothesis was rejected, and do not report that
the other tests were performed: in that case, results can be utterly misleading
to a reader.

Multiple testing issues in the case of assessing stochastic multiobjective
optimizers can arise for at least two different reasons:

• There are more than two algorithms and we wish to make inferences about
performance differences between all or a subset of them.

• There are just two algorithms, but we wish to make multiple statistical
tests of their performance, e.g., considering more than one indicator.

Clearly, this is a complicated issue and we can only touch on the correct
procedures here. The important thing to know is that the issue exists, and
to do something to minimize the problem. We briefly consider five possible
approaches:

i). Do all tests as normal (with uncorrected p-values) but report all tests done
openly and notify the reader that the significance levels are not, therefore,
reliable.

ii). In the special case where we have multiple algorithms but just one statistic
(e.g. one indicator), use a statistical test that is designed explicitly for
assessing several independent samples. The Kruskal-Wallis test (Conover,
1999), is an extension of the two-sample Mann-Whitney test that works
for multiple samples. Similarly, the Friedman test (Conover, 1999) extends
the paired Wilcoxon signed rank test to any number of related samples.
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iii). In the special case where we want to use multiple statistics (e.g. multiple
different indicators) for just two algorithms, and we are interested only
in an inference derived per-sample from all statistics, (e.g. we want to
test the significance of a difference in hypervolume between those pairs Ai

and Bi where the diversity difference between them is positive), then the
permutation test can be used to derive the null distribution, as usual.

iv). Minimize the number of different tests carried out on a pair of algorithms
by carefully choosing which tests to apply before collecting the data. Col-
lect independent data for each test to be carried out.

v). Apply the tests on the same data but use methods for correcting the
p-values for the reduction in confidence associated with data re-use.

Approach (i) does not allow powerful conclusions to be drawn, but it at least
avoids mis-representation of results. The second approach is quite restrictive
as it only applies to a single test being applied to multiple algorithms—and
uses rank tests, which might not be appropriate in all circumstances. Similarly,
(iii) only applies in the special case noted. A more general approach is (iv),
which is just the conservative option; the underlying strategy is to perform
a test only if there is some realistic chance that the null hypothesis can be
rejected (and the result would be interesting). This careful conservatism can
then be accommodated. However, while following (iv) might be possible much
of the time, sometimes it is essential to do several tests on limited data and to
be as confident as possible about any positive results. In this case, one should
then use approach (v).

The simplest and most conservative, i.e., weakest approach for correcting
the p-values is the Bonferroni correction (Bland and Altman, 1995). Suppose
we would like to consider an overall significance level of α and that altogether
n comparisons, i.e., distinct statistical tests, are performed per sample. Then,
the significance level αs for each distinct test is set to

αs =
α

n
(14.16)

Explicitly, given n tests Ti for hypotheses Hi(1 ≤ i ≤ n) under the assumption
H0 that all hypotheses Hi are false, and if the individual test critical values
are ≤ α/n, then the experiment-wide critical value is ≤ α. In equation form,
if

P (Ti passes | H0) ≤ α

n
for 1 ≤ i ≤ n, (14.17)

then
P (some Ti passes | H0) ≤ α. (14.18)

In most cases, the Bonferroni approach is too weak to be useful and other
methods are preferrable (Perneger, 1998), e.g., resampling based methods
(Westfall and Young, 1993).
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Assessing Worst-Case or Best-Case Performance

In certain circumstances, it may be important to compare the worst-case or
best-case performance of two optimizers. Obtaining statistically significant
inferences for these is more computationally demanding than when assessing
differences in mean or typical performance, however, it can be done using per-
mutation methods, such as bootstrapping or variants of Fisher’s permutation
test (Efron and Tibshirani, 1993, chap. 15).

For example, let us say that we wish to estimate whether there is a differ-
ence in the expected worst indicator value of two algorithms, when each is run
ten times. To assess this, one can run each algorithm for 30 batches of 10 runs,
and find the mean of the worst-in-a-batch value, for each algorithm. Then, to
compute the null distribution, the labels of all 600 samples can be randomly
permuted, and the worst indicator value from those with a label in 1, . . . , 10
are determined. By sampling this statistic many times, the desired p-value
that the mean of the worst-in-a-batch statistics are significantly different, can
be computed. Quite obviously, such a testing procedure is quite general and
it can be tailored to answer many questions related to worst-case or best-case
performance.

14.9 Summary

This chapter deals with the issue of assessing and comparing the quality of
Pareto set approximations. Two current principal approaches, the quality in-
dicator method and the attainment function method, are discussed, and, in
addition, a third approach, the dominance-ranking technique, is presented.6

As discussed, there is no ‘best’ quality assessment technique with respect
to both quality measures and statistical analysis. Instead, it appears to be rea-
sonable to use the complementary strengths of the three general approaches.
As a first step in a comparison, it can be checked whether the considered op-
timizers exhibit significant differences using the dominance-ranking approach,
because such an analysis allows the strongest type of statements. Quality in-
dicators can then be applied in order to quantify the potential differences
in quality and to detect differences that could not be revealed by dominance
ranking. The corresponding statements are always restricted as they only hold
for the preferences that are represented by the considered indicators. The com-
putation and the statistical comparison of the empirical attainment functions
are especially useful in terms of visualization and to add another level of de-
tail; for instance, plotting the regions of significant difference gives hints on
where the outcomes of two algorithms differ.

6 Implementations for selected quality indicators as well as statistical testing proce-
dures can be downloaded at http://www.tik.ee.ethz.ch/sop/pisa/ under the head-
ing ‘performance assessment’.
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We noted when discussing quality indicators that, as well as their tradi-
tional use to assess optimization outcomes, they can also be used within op-
timizers, to guide the generating process (Beume et al., 2007; Fleischer, 2003;
Smith et al., 2008; Wagner et al., 2007; Zitzler and Künzli, 2004). Optimizers
that seek to maximize a quality indicator directly are effectively conducting
the search in the space of approximation sets, rather than in the space of solu-
tions or points. This seems a logical and attractive approach when attempting
to generate a Pareto front approximation, because ultimately the outcome
will be assessed using a quality indicator (usually). However, although such
approaches are improving, some of them still rely on approximation of the
set-based indicator function, or they do not rely solely on the indicator, but
make use of heuristics concerning individuals (point/solutions) (e.g., an indi-
vidual’s nondominated rank) as well. A recent study even compared set-based
selection with individual-based selection, and found the latter to be generally
preferable.

Quality indicators for assessing Pareto front approximations are some-
times used without explicitly stating what the DM preferences are. Really,
the indicator(s) used should reflect any information one has about the DM
preferences, so that approximation sets are assessed appropriately. The work
of Hansen and Jaszkiewicz (1998) defined some quality indicators in terms of
sets of utility functions, a framework that easily allows for DM preferences to
be incorporated into assessment. A similar approach was recently proposed
by Zitzler et al. (2007) for the hypervolume. Both of these indicator families
can be used to incoporate preferences within generating methods (potentially
in an interactive fashion).

Finally, note that there are several further issues that have not been treated
in this chapter, e.g., binary quality indicators; indicators taking the decision
vectors into account; computation of indicators on parallel or distributed ar-
chitectures. Many of these issues represent current research directions which
will probably lead to modified or additional performance assessment methods
in the near future.
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