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Abstract

Many real-world problems involve two types of problem difficulty: i) mul-
tiple, conflicting objectives and ii) a highly complex search space. On the one
hand, instead of a single optimal solution competing goals give rise to a set of
compromise solutions, generally denoted as Pareto-optimal. In the absence of
preference information, none of the corresponding trade-offs can be said to be
better than the others. On the other hand, the search space can be too large
and too complex to be solved by exact methods. Thus, efficient optimization
strategies are required that are able to deal with both difficulties.

Evolutionary algorithms possess several characteristics that are desirable
for this kind of problem and make them preferable to classical optimization
methods. In fact, various evolutionary approaches to multiobjective optimiza-
tion have been proposed since 1985, capable of searching for multiple Pareto-
optimal solutions concurrently in a single simulation run. However, in spite of
this variety, there is a lack of extensive comparative studies in the literature.
Therefore, it has remained open up to now:

• whether some techniques are in general superior to others,

• which algorithms are suited to which kind of problem, and

• what the specific advantages and drawbacks of certain methods are.

The subject of this work is the comparison and the improvement of existing
multiobjective evolutionary algorithms and their application to system design
problems in computer engineering. In detail, the major contributions are:

• An experimental methodology to compare multiobjective optimizers is devel-
oped. In particular, quantitative measures to assess the quality of trade-off fronts
are introduced and a set of general test problems is defined, which are i) easy
to formulate, ii) represent essential aspects of real-world problems, and iii) test
for different types of problem difficulty.

• On the basis of this methodology, an extensive comparison of numerous evolu-
tionary techniques is performed in which further aspects such as the influence
of elitism and the population size are also investigated.

• A novel approach to multiobjective optimization, the strength Pareto evolution-
ary algorithm, is proposed. It combines both established and new techniques in
a unique manner.

• Two complex multicriteria applications are addressed using evolutionary algo-
rithms: i) the automatic synthesis of heterogeneous hardware/systems and ii)
the multidimensional exploration of software implementations for digital signal
processors.





Zusammenfassung
Viele praktische Optimierungsprobleme sind durch zwei Eigenschaften cha-

rakterisiert: a) mehrere, teilweise im Konflikt stehende Zielfunktionen sind in-
volviert, und b) der Suchraum ist hochgradig komplex. Einerseits f¨uhren wider-
sprüchliche Optimierungskriterien dazu, dass es statt eines klar definierten Op-
timums eine Menge von Kompromissl¨osungen, allgemein als Pareto-optimal
bezeichnet, gibt. Insofern keine Gewichtung der Kriterien vorliegt, m¨ussen die
entsprechenden Alternativen als gleichwertig betrachtet werden. Andererseits
kann der Suchraum eine bestimmte Gr¨osse und Komplexit¨at überschreiten, so
dass exakte Optimierungsverfahren nicht mehr anwendbar sind. Erforderlich
sind demnach effiziente Suchstrategien, die beiden Aspekten gerecht werden.

Evolutionäre Algorithmen sind aufgrund mehrerer Merkmale f¨ur diese Art
von Problem besonders geeignet; vor allem im Vergleich zu klassischen Metho-
den weisen sie gewisse Vorteile auf. Doch obwohl seit 1985 verschiedenste evo-
lutionäre Ansätze entwickelt wurden, die mehrere Pareto-optimale L¨osungen in
einem einzigen Simulationslauf generieren k¨onnen, mangelt es in der Literatur
an umfassenden Vergleichsstudien. Folglich blieb bislang ungekl¨art,

• ob bestimmte Techniken anderen Methoden generell ¨uberlegen sind,

• welche Algorithmen f¨ur welche Art von Problem geeignet sind und

• wo die spezifischen Vor- und Nachteile einzelner Verfahren liegen.

Die vorliegende Arbeit hat zum Gegenstand, bestehende evolution¨are Mehr-
zieloptimierungsverfahren zu vergleichen, zu verbessern und auf Entwurfspro-
bleme im Bereich der Technischen Informatik anzuwenden. Im Einzelnen wer-
den folgende Themen behandelt:

• Eine Methodik zum experimentellen Vergleich von Mehrzieloptimierungsver-
fahren wird entwickelt. Unter anderem werden quantitative Qualit¨atsmasse
für Mengen von Kompromissl¨osungen eingef¨uhrt und mehrere Testfunktionen
definiert, die a) eine einfache Problembeschreibung besitzen, b) wesentliche
Merkmale realer Optimierungsprobleme repr¨asentieren und c) erlauben, ver-
schiedene Einflussfaktoren separat zu ¨uberprüfen.

• Auf der Basis dieser Methodik wird ein umfangreicher Vergleich diverser evolu-
tionärer Techniken durchgef¨uhrt, wobei auch weitere Aspekte wie die Auswir-
kungen von Elitism und der Populationsgr¨osse auf den Optimierungsprozess
untersucht werden.

• Ein neues Verfahren, der Strength-Pareto-Evolutionary-Algorithm, wird vorge-
stellt. Es kombiniert auf spezielle Art und Weise bew¨ahrte und neue Konzepte
miteinander.

• Zwei komplexe Mehrzielprobleme werden auf der Basis evolution¨arer Metho-
den untersucht: a) die automatische Synthese von heterogenen Hardware/Soft-
ware-Systemen und b) die mehrdimensionale Exploration von Softwareimple-
mentierungen f¨ur digitale Signalverarbeitungsprozessoren.
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1
Introduction

Almost every real-world problem involves simultaneous optimization of several
incommensurable and often competing objectives. While in single-objective
optimization the optimal solution is usually clearly defined, this does not hold
for multiobjective optimization problems. Instead of a single optimum, there
is rather a set of alternative trade-offs, generally known asPareto-optimalsolu-
tions. These solutions are optimal in the wider sense that no other solutions in
the search space are superior to them whenall objectives are considered.

In this chapter, the principles of multiobjective optimization are outlined
and basic concepts are formally defined. This is followed by a discussion about
traditional approaches to approximate the set of Pareto-optimal solutions and
in particular their potential disadvantages. Afterwards, evolutionary algorithms
are presented as a recent optimization method which possesses several charac-
teristics that are desirable for this kind of problem. The history of evolution-
ary multiobjective optimization is briefly outlined with special emphasis on the
open questions in this research area. Finally, Section 1.4 sketches the scope of
the present work and gives an overview of the remaining chapters.

1.1 Multiobjective Optimization

1.1.1 Basic Concepts and Terminology

Multiobjective optimization problems (MOPs) are common. For example, con-
sider the design of a complex hardware/software system as it can be found in
mobile phones, cars, etc. Often the cost of such systems is to be minimized,
while maximum performance is desired. Depending on the application, further
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objectives may be important such as reliability and power dissipation. They can
be either defined explicitly as separate optimization criteria or formulated as
constraints, e.g., that the size of the system must not exceed given dimensions.
Formally, this can be defined as follows.1

Def. 1: (Multiobjective Optimization Problem) A general MOP includes a set of n
parameters (decision variables), a set of k objective functions, and a set of m
constraints. Objective functions and constraints are functions of the decision
variables. The optimization goal is to

maximize yyy = fff (xxx) = ( f1(xxx), f2(xxx), . . . , fk(xxx))

subject to eee(xxx) = (e1(xxx), e2(xxx), . . . , em(xxx)) ≤ 000
where xxx = (x1, x2, . . . , xn) ∈ XXX

yyy = (y1, y2, . . . , yk) ∈ YYY

(1.1)

and xxx is thedecision vector, yyy is theobjective vector, XXX is denoted as the
decision space, and YYY is called theobjective space.

The constraintseee(xxx) ≤ 000 determine the set of feasible solutions.

Def. 2: (Feasible Set)The feasible setXXX f is defined as the set of decision vectors xxx
that satisfy the constraints eee(xxx) :

XXX f = {xxx ∈ XXX | eee(xxx) ≤ 000} (1.2)

The image of XXX f , i.e., the feasible region in the objective space, is denoted as
YYY f = fff (XXX f ) = ⋃

xxx∈XXX f
{ fff (xxx)}.

Without loss of generality, a maximization problem is assumed here. For min-
imization or mixed maximization/minimization problems the definitions pre-
sented in this section are similar.

Consider again the above example and assume that the two objectives per-
formance (f1) and cheapness (f2), the inverse of cost, are to be maximized
under size constraints (e1). Then an optimal design might be an architecture
which achieves maximum performance at minimal cost and does not violate the
size limitations. If such a solution exists, we actually only have to solve a single-
objective optimization problem (SOP). The optimal solution for either objec-
tive is also the optimum for the other objective. However, what makes MOPs
difficult is the common situation when the individual optima corresponding to
the distinct objective functions are sufficiently different. Then, the objectives
are conflicting and cannot be optimized simultaneously. Instead, a satisfactory
trade-off has to be found. In our example, performance and cheapness are gen-
erally competing: high-performance architectures substantially increase cost,
while cheap architectures usually provide low performance. Depending on the
market requirements, an intermediate solution (medium performance, medium
cost) might be an appropriate trade-off. This discussion makes clear that a new
notion of optimality is required for MOPs.

1The definitions and terms presented in this section correspond to mathematical formulations
most widespread in multiobjective optimization literature, see, e.g., (Hwang and Masud 1979;
Sawaragi, Nakayama, and Tanino 1985; Steuer 1986; Ringuest 1992).
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Fig. 1: Illustrative example of Pareto optimality in objective space (left) and the possible rela-
tions of solutions in objective space (right).

In single-objective optimization, the feasible set is completely (totally) or-
dered according to the objective functionf : for two solutionsaaa, bbb ∈ XXX f either
f (aaa) ≥ f (bbb) or f (bbb) ≥ f (aaa). The goal is to find the solution (or solutions) that
gives the maximum value off (Cohon 1985). However, when several objectives
are involved, the situation changes:XXX f is, in general, not totally ordered, but
partially ordered (Pareto 1896). This is illustrated in Figure 1 on the left. The
solution represented by pointB is better than the solution represented by point
C: it provides higher performance at lower cost. It would be even preferable if
it would only improve one objective, as is the case forC andD: despite equal
cost,C achieves better performance thanD. In order to express this situation
mathematically, the relations=, ≥, and> are extended to objective vectors by
analogy to the single-objective case.

Def. 3: For any two objective vectors uuu andvvv,

uuu = vvv iff ∀ i ∈ {1, 2, . . . , k} : ui = vi

uuu ≥ vvv iff ∀ i ∈ {1, 2, . . . , k} : ui ≥ vi

uuu > vvv iff uuu ≥ vvv ∧ uuu 6= vvv

(1.3)

The relations≤ and< are defined similarly.

Using this notion, it holds thatB > C, C > D, and, as a consequence,B > D.
However, when comparingB and E, neither can be said to be superior, since
B 6> E and E 6> B. Although the solution associated withE is cheaper,
it provides lower performance than the solution represented byB. Therefore,
two decision vectorsaaa, bbb can havethreepossibilities with MOPs regarding the
≥ relation (in contrast to two with SOPs):fff (aaa) ≥ fff (bbb), fff (bbb) ≥ fff (aaa), or
fff (aaa) 6≥ fff (bbb) ∧ fff (bbb) 6≥ fff (aaa). Here, the following symbols and terms are used
in order to classify the different situations.
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Def. 4: (Pareto Dominance)For any two decision vectors aaa and bbb,

aaa � bbb (aaa dominatesbbb) iff fff (aaa) > fff (bbb)

aaa � bbb (aaa weakly dominatesbbb) iff fff (aaa) ≥ fff (bbb)

aaa ∼ bbb (aaa is indifferent tobbb) iff fff (aaa) 6≥ fff (bbb) ∧ fff (bbb) 6≥ fff (aaa)

(1.4)

The definitions for a minimization problem (≺, �, ∼) are analogical.

In Figure 1 on the right, the light gray rectangle encapsulates the region in ob-
jective space that is dominated by the decision vector represented byB. The
dark gray rectangle contains the objective vectors whose corresponding deci-
sion vectors dominate the solution associated withB. All solutions for which
the resulting objective vector is in neither rectangle are indifferent to the solu-
tion represented byB.

Based on the concept of Pareto Dominance, the optimality criterion for
MOPs can be introduced. Still referring to Figure 1,A is unique amongB,
C, D, andE: its corresponding decision vectoraaa is not dominated by any other
decision vector. That means,aaa is optimal in the sense that it cannot by improved
in any objective without causing a degradation in at least one other objective.
Such solutions are denoted asPareto optimal; sometimes also the termnoninfe-
rior (Cohon 1978) is used.

Def. 5: (Pareto Optimality) A decision vector xxx ∈ XXX f is said to benondominated
regarding a set AAA ⊆ XXX f iff

6 ∃ aaa ∈ AAA : aaa � xxx (1.5)

If it is clear within the context which set AAA is meant, it is simply left out. More-
over, xxx is said to bePareto optimaliff xxx is nondominated regarding XXX f .

In Figure 1 the white points represent Pareto-optimal solutions. They are indif-
ferent to each other. This makes the main difference to SOPs clear: there is no
single optimal solution but rather a set of optimal trade-offs. None of these can
be identified as better than the others unless preference information is included
(e.g., a ranking of the objectives).

The entirety of all Pareto-optimal solutions is called thePareto-optimal set;
the corresponding objective vectors form thePareto-optimal frontor surface.

Def. 6: (Nondominated Sets and Fronts)Let AAA ⊆ XXX f . The function p(AAA) gives the
set of nondominated decision vectors in AAA:

p(AAA) = {aaa ∈ AAA | aaa is nondominated regarding AAA} (1.6)

The set p(AAA) is thenondominated setregarding AAA, the corresponding set of ob-
jective vectors fff (p(AAA)) is thenondominated frontregarding AAA. Furthermore,
the set XXX p = p(XXX f ) is called thePareto-optimal setand the set YYY p = fff (XXX p)

is denoted as thePareto-optimal front.
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Fig. 2: Illustration of locally optimal solution sets and globally optimal solution sets in objec-
tive space.

The Pareto-optimal set comprises the globally optimal solutions. However, as
with SOPs there may also be local optima which constitute a nondominated set
within a certain neighborhood. This corresponds to the concepts of global and
local Pareto-optimal sets introduced by Deb (1998, 1999a):

Def. 7: Consider a set of decision vectors AAA ⊆ XXX f .

1. The set AAA is denoted as alocal Pareto-optimal setiff

∀ aaa ∈ AAA : 6 ∃ xxx ∈ XXX f : xxx � aaa ∧ ‖xxx − aaa‖ < ε ∧ ‖ fff (xxx) − fff (aaa)‖ < δ (1.7)

where‖ · ‖ is a corresponding distance metric andε > 0, δ > 0.

2. The set AAA is called aglobal Pareto-optimal setiff

∀ aaa ∈ AAA : 6 ∃ xxx ∈ XXX f : xxx � aaa (1.8)

The difference between local and global optima is visualized in Figure 2. The
dashed line constitutes a global Pareto-optimal front, while the solid line depicts
a local Pareto-optimal front. The decision vectors associated with the latter are
locally nondominated though not Pareto-optimal, because the solution related
to point A dominates any of them. Finally, note that a global Pareto-optimal set
does not necessarily contain all Pareto-optimal solutions and that every global
Pareto-optimal set is also a local Pareto-optimal set.

1.1.2 Search and Decision Making

In solving an MOP, two conceptually distinct types of problem difficulty can be
identified (Horn 1997): search and decision making. The first aspect refers
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to the optimization process in which the feasible set is sampled for Pareto-
optimal solutions. As with single-objective optimization, large and complex
search spaces can make search difficult and preclude the use of exact opti-
mization methods like linear programming (Steuer 1986). The second aspect
addresses the problem of selecting a suitable compromise solution from the
Pareto-optimal set. A human decision maker (DM) is necessary to make the
often difficult trade-offs between conflicting objectives.

Depending on how optimization and the decision process are combined,
multiobjective optimization methods can be broadly classified into three cat-
egories (Hwang and Masud 1979; Horn 1997):

Decision making before search:The objectives of the MOP are aggregated
into a single objective which implicitly includes preference information
given by the DM.

Search before decision making:Optimization is performed without any pref-
erence information given. The result of the search process is a set of
(ideally Pareto-optimal) candidate solutions from which the final choice
is made by the DM.

Decision making during search: The DM can articulate preferences during
the interactive optimization process. After each optimization step, a num-
ber of alternative trade-offs is presented on the basis of which the DM
specifies further preference information, respectively guides the search.

The aggregation of multiple objectives into one optimization criterion has the
advantage that the classical single-objective optimization strategies can be ap-
plied without further modifications. However, it requires profound domain
knowledge which is usually not available. For example, in computer engi-
neering design space exploration specifically aims at gaining deeper knowledge
about the problem and the alternative solutions. Performing the search before
decision making overcomes this drawback, but excludes preference articulation
by the DM which might reduce the search space complexity. Another problem
with this and also the third algorithm category might be the visualization and
the presentation of nondominated sets for higher dimensional MOPs (Cohon
1985). Finally, the integration of search and decision making is a promising
way to combine the other two approaches, uniting the advantages of both.

In this thesis, the focus is on multiobjective optimization methods that are
capable of

1. sampling intractably large and highly complex search spaces, and

2. generating the exact Pareto-optimal set or approximations of it.

This is the the first step in the direction of decision making during search and
forms the basis for further research in this area.
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1.2 Traditional Approaches
Classical methods for generating the Pareto-optimal set aggregate the objectives
into a single, parameterized objective function by analogy to decision making
before search. However, the parameters of this function are not set by the DM,
but systematically varied by the optimizer. Several optimization runs with dif-
ferent parameter settings are performed in order to achieve a set of solutions
which approximates the Pareto-optimal set. Basically, this procedure is inde-
pendent of the underlying optimization algorithm.

Some representatives of this class of techniques are the weighting method
(Cohon 1978), the constraint method (Cohon 1978), goal programming (Steuer
1986), and the minmax approach (Koski 1984). In place of the various methods,
the two first mentioned are briefly discussed here.

1.2.1 Weighting Method

The original MOP is converted to an SOP by forming a linear combination of
the objectives:

maximize y = f (xxx) = w1 · f1(xxx) + w2 · f2(xxx) + . . . + wk · fk(xxx))

subject to xxx ∈ XXX f
(1.9)

Thewi are called weights and, without loss of generality, normalized such that∑
wi = 1. Solving the above optimization problem for a certain number of

different weight combinations yields a set of solutions.
On condition that an exact optimization algorithm is used and all weights are

positive, this method will only generate Pareto-optimal solutions which can be
easily shown. Assume that a feasible decision vectoraaa maximizesf for a given
weight combination and is not Pareto optimal. Then, there is a solutionbbb which
dominatesaaa, i.e., without loss of generalityf1(bbb) > f1(aaa) and fi (bbb) ≥ fi (aaa)

for i = 2, . . . , k. Therefore, f (bbb) > f (aaa), which is a contradiction to the
assumption thatf (aaa) is maximum.

The main disadvantage of this technique is that it cannot generate all Pareto-
optimal solutions with non-convex trade-off surfaces. This is illustrated in Fig-
ure 3 based on the embedded system design example. For fixed weightsw1, w2,
solutionxxx is sought to maximizey = w1 · f1(xxx)+w2 · f2(xxx). This equation can
be reformulated asf2(xxx) = −w1

w2
f1(xxx) + y

w2
, which defines a line with slope

−w1
w2

and intercepty
w2

in objective space (solid line in Figure 3). Graphically, the
optimization process corresponds to moving this line upwards until no feasible
objective vector is above it and at least one feasible objective vector (hereA and
D) is on it. However, the pointsB andC will never maximize f . If the slope
is increased,D achieves a greater value off (upper dotted line); if the slope is
decreased,A has a greaterf value thanB andD (lower dotted line).

1.2.2 Constraint Method

Another technique which is not biased towards convex portions of the Pareto-
optimal front transformsk − 1 of thek objectives into constraints. The remain-
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Fig. 3: Graphical interpretation of the weighting method (left) and the constraint method
(right).

ing objective, which can be chosen arbitrarily, is the objective function of the
resulting SOP:

maximize y = f (xxx) = fh(xxx)

subject to ei (xxx) = fi (xxx) ≥ εi , (1 ≤ i ≤ k, i 6= h)

xxx ∈ XXX f

(1.10)

The lower bounds,εi , are the parameters that are varied by the optimizer in
order to find multiple Pareto-optimal solutions.

As depicted in Figure 3 on the right, the constraint method is able to obtain
solutions associated with non-convex parts of the trade-off curve. Settingh = 1
andε2 = r (solid line) makes the solution represented byA infeasible regarding
the extended constraint set, while the decision vector related toB maximizesf
among the remaining solutions. Figure 3 also shows a problem with this tech-
nique. If the lower bounds are not chosen appropriately (ε2 = r ′), the obtained
new feasible set might be empty, i.e., there is no solution to the corresponding
SOP. In order to avoid this situation, a suitable range of values for theεi has to
been known beforehand.

1.2.3 Discussion of Classical Methods

What makes traditional approaches attractive and why they are popular may be
attributed to the fact that well-studied algorithms for SOPs can be used. For
large-scale problems, hardly anyreal multiobjective optimization techniques
had previously been available (Horn 1997). By contrast, in single-objective
optimization a wide range of heuristic methods have been known that are capa-
ble of dealing with this complexity, e.g., random search algorithms (T¨orn and



1.3. Evolutionary Algorithms 13

Žilinskas 1989), stochastic local search algorithms (Horst and Pardalos 1995),
simulated annealing (T¨orn andŽilinskas 1989), tabu search (Glover, Taillard,
and de Werra 1993), etc.

However, the preceding sections on weighting and constraint methods show
that some difficulties may also accompany classical optimization strategies.

• Some techniques, e.g., the weighting method, may be sensitive to the shape of
the Pareto-optimal front.

• Problem knowledge may be required which may not be available.

Deb (1999b) mentions further potential problems with these approaches, i.e.,
application areas where their use is restricted. Moreover, classical methods all
have in common that they require several optimization runs to obtain an ap-
proximation of the Pareto-optimal set. As the runs are performed independently
from each other, synergies can usually not be exploited which, in turn, may
cause high computation overhead. However, this again depends on the applica-
tion.

Recently, evolutionary algorithms have become established as an alternative
to classical methods through which i) large search spaces can be handled and
ii) multiple alternative trade-offs can be generated in a single optimization run.
Furthermore, they can be implemented in a way such that both of the above
difficulties are avoided.

1.3 Evolutionary Algorithms
The term evolutionary algorithm (EA) stands for a class of stochastic optimiza-
tion methods that simulate the process of natural evolution. The origins of EAs
can be traced back to the late 1950s, and since the 1970s several evolutionary
methodologies have been proposed, mainly genetic algorithms, evolutionary
programming, and evolution strategies (B¨ack, Hammel, and Schwefel 1997).
All of these approaches operate on a set of candidate solutions. Using strong
simplifications, this set is subsequently modified by the two basic principles of
evolution: selection and variation. Selection represents the competition for re-
sources among living beings. Some are better than others and more likely to
survive and to reproduce their genetic information. In evolutionary algorithms,
natural selection is simulated by a stochastic selection process. Each solution
is given a chance to reproduce a certain number of times, dependent on their
quality. Thereby, quality is assessed by evaluating the individuals and assigning
them scalar fitness values. The other principle, variation, imitates natural capa-
bility of creating ”new” living beings by means of recombination and mutation.

Although the underlying principles are simple, these algorithms have proven
themselves as a general, robust and powerful search mechanism. B¨ack, Ham-
mel, and Schwefel (1997) argue that
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“[. . . ] the most significant advantage of using evolutionary search lies in
the gain of flexibility and adaptability to the task at hand, in combination
with robust performance (although this depends on the problem class) and
global search characteristics.”

Moreover, EAs seem to be especially suited to multiobjective optimization be-
cause they are able to capture multiple Pareto-optimal solutions in a single sim-
ulation run and may exploit similarities of solutions by recombination. Some
researchers suggest that multiobjective search and optimization might be a prob-
lem area where EAs do better than other blind search strategies (Fonseca and
Fleming 1995b; Valenzuela-Rend´on and Uresti-Charre 1997). Although this
statement must be qualified with regard to the “no free lunch” theorems for
optimization (Wolpert and Macready 1997), up to now there are few if any al-
ternatives to EA-based multiobjective optimization (Horn 1997). The numerous
applications and the rapidly growing interest in the area of multiobjective evo-
lutionary algorithms (MOEAs) take this fact into account.

After the first pioneering studies on evolutionary multiobjective optimiza-
tion appeared in the mid-1980s (Schaffer 1984; Schaffer 1985; Fourman 1985),
a few different MOEA implementations were proposed in the years 1991–1994
(Kursawe 1991; Hajela and Lin 1992; Fonseca and Fleming 1993; Horn, Naf-
pliotis, and Goldberg 1994; Srinivas and Deb 1994). Later, these approaches
(and variations of them) were successfully applied to various multiobjective
optimization problems (Ishibuchi and Murata 1996; Cunha, Oliviera, and Co-
vas 1997; Valenzuela-Rend´on and Uresti-Charre 1997; Fonseca and Fleming
1998b; Parks and Miller 1998). In recent years, some researchers have in-
vestigated particular topics of evolutionary multiobjective search, such as con-
vergence to the Pareto-optimal front (Veldhuizen and Lamont 1998a; Rudolph
1998), niching (Obayashi, Takahashi, and Takeguchi 1998), and elitism (Parks
and Miller 1998; Obayashi, Takahashi, and Takeguchi 1998), while others have
concentrated on developing new evolutionary techniques (Lis and Eiben 1997;
Laumanns, Rudolph, and Schwefel 1998). Meanwhile, several overview and re-
view articles have also become available (Fonseca and Fleming 1995b; Tamaki,
Kita, and Kobayashi 1996; Horn 1997; Veldhuizen and Lamont 1998b; Deb
1999b; Coello 1999a).

In spite of this variety, there is a lack of studies providing performance com-
parisons and investigation of different aspects of the several evolutionary ap-
proaches. The few comparative studies that have been published remain mostly
qualitative and are often restricted to a few algorithms. As a consequence, the
following questions have remained open:

• As Horn (Horn 1997) states

“it is far from clear which, if any, approaches are superior for general
classes of multiobjective problems.”

The question is which EA implementations are suited to which sort of problem
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and what are the specific advantages and drawbacks, respectively, of different
techniques.

• In contrast to SOPs, there is no single criterion to assess the quality of a trade-off
front; quality measures are difficult to define. This might be the reason for the
lack of studies in that area. Up to now, there has been no sufficient, commonly
accepted definition of quantitative performance metrics for multiobjective opti-
mizers.

• There is no accepted set of well-defined test problems in the community. This
makes it difficult to evaluate new algorithms in comparison with existing ones.

• The various MOEAs incorporate different concepts, e.g., elitism and niching,
that are in principle independent of the fitness assignment method used. How-
ever, it is not clear what the benefits of these concepts are. For instance, the
question of whether elitism can improve multiobjective search in general is still
an open problem.

1.4 Overview

The above issues sketch the scope of the present work and result in the following
research goals:

1. Comparison and investigation of prevailing approaches.

2. Improvement of existing MOEAs, possible development of a new, alternative
evolutionary method.

3. Application of the most promising technique to real-world problems in the do-
main of system design.

The first aspect aims at finding advantages and disadvantages of the different ap-
proaches and yielding a better understanding of the effects and the differences of
the various methods. This involves the careful definition of quantitative perfor-
mance measures which ideally allow for different quality criteria. Furthermore,
appropriate test functions have to be designed that i) are understandable and
easy to formulate, ii) represent essential aspects of “typical” applications, and
iii) test for various types of problem difficulty. The last item is important for
identifying those problem features which cause the most difficulty for MOEAs
to converge to the Pareto-optimal front. The comparison also includes the ex-
amination of further factors of evolutionary search such as populations size and
elitism. As a result, these investigations may either contribute to the problem
of sampling the search space more efficiently by improving existing methods or
lead to the development of a new evolutionary approach. Finally, the insights
gained from the comparison as well as the improvements achieved will be used
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to address individual system design problems in computer engineering. Usually,
these applications are by far too complex to be handled by exact optimization
algorithms.

This monograph is divided into two parts. The first part (Chapters 2 and 3)
is devoted to the research goals one and two, while the application side, which
is related to the third research goal, is treated in the second part (Chapters 4
and 5).

In Chapter 2, the key concepts of evolutionary multiobjective optimization
are discussed including a brief overview of salient MOEA implementations.
In addition, a new evolutionary approach is presented and a universal elitism
scheme for MOEAs is proposed.

The comparison of different MOEA implementations is the subject of the
third chapter. First, several quantitative performance measures are introduced
and discussed, and the experimental design is fully detailed. Then, two kinds
of test problems are investigated. On the one hand, two NP hard problems
are considered, the 0/1 knapsack problem and the traveling salesman problem,
which are reformulated as MOPs. On the other hand, a set of six continuous
functions is defined which test for different problem difficulties separately.

In Chapter 4, the first application, the automated synthesis of complex hard-
ware/software systems, is described. Three evolutionary approaches are com-
pared on this problem, and a design space exploration for a video codec exam-
ple is performed with regard to the optimization criteria cost, performance, and
power dissipation.

The second application (Chapter 5) addresses the problem of automatically
generating software implementations for programmable digital signal proces-
sors from dataflow specifications. Although being computationally more ex-
pensive than existing state of the art algorithms, an EA is shown to find better
solutions in a reasonable amount of run-time when only one objective (data
memory requirement) is considered. Furthermore, the first systematic multiob-
jective optimization framework for this problem is presented which takes the
three objectives execution time, program memory requirement, and data mem-
ory requirement into account. The approach is demonstrated on a sample rate
conversion system, where the trade-off fronts for a number of well-known, com-
mercial digital signal processors are analyzed. Moreover, two MOEAs are com-
pared on eleven practical digital signal processing applications.

Finally, Chapter 6 summarizes the fundamental results of this thesis and
offers future perspectives.
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Methods





2
Evolutionary Algorithms for Multiobjective
Optimization

Due to their inherent parallelism, EAs have the potential of finding multiple
Pareto-optimal solutions in a single simulation run. However, with many com-
plex applications it is not possible to generate noninferior solutions, much less
the entire Pareto-optimal set. Therefore, the optimization goal for an MOP may
be reformulated in a more general fashion based on three objectives:

• The distance of the resulting nondominated front to the Pareto-optimal front
should be minimized.

• A good (in most cases uniform) distribution of the solutions found is desirable.

• The spread of the obtained nondominated front should be maximized, i.e., for
each objective a wide range of values should be covered by the nondominated
solutions.

The subject of this chapter is the question of how these subgoals can be attained
in evolutionary multiobjective search. After the basic terminology and the flow
of a general EA have been outlined in Section 2.1, fundamental ideas of MOEAs
are introduced in the following section, where in particular the differences be-
tween evolutionary single-objective and multiobjective optimization are worked
out. Then, a brief summary of five salient evolutionary approaches to multiob-
jective optimization is presented which will be later, in Chapter 3, empirically
compared on various test problems. Section 2.4 introduces a new MOEA which
combines several features of previous evolutionary multiobjective optimizers in
a unique manner, and in the last section a universal mechanism to prevent losing
nondominated solutions during the search process is proposed.
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2.1 Basic Principles of Evolutionary Algorithms
In general, an EA is characterized by three facts:

1. a set of solution candidates is maintained, which

2. undergoes a selection process and

3. is manipulated by genetic operators, usually recombination and mutation.

By analogy to natural evolution, the solution candidates are calledindividuals
and the set of solution candidates is called thepopulation. Each individual
represents a possible solution, i.e., a decision vector, to the problem at hand
where, however, an individualis nota decision vector but rather encodes it based
on an appropriate structure. Without loss of generality, this structure is assumed
to be a vector here, e.g., a bit vector or a real-valued vector, although other
structures like trees (Koza 1992) might be used as well; the set of all possible
vectors constitutes theindividual space III . In this terminology, the population
is a set of vectorsiii ∈ III , to be more precise a multi-set of vectors since it can
contain several identical individuals.

In the selection process, which can be either stochastic or completely deter-
ministic, low-quality individuals are removed from the population, while high-
quality individuals are reproduced. The goal is to focus the search on particular
portions of the search space and to increase the average quality within the pop-
ulation. The quality of an individual with respect to the optimization task is
represented by a scalar value, the so-calledfitness. Note that since the quality
is related to the objective functions and the constraints, an individual must first
be decoded before its fitness can be calculated. This situation is illustrated in
Figure 4. Given an individualiii ∈ III . A mapping functionmmm encapsulates the
decoding algorithm to derive the decision vectorxxx = mmm(iii ) from iii . Applying
fff to xxx yields the corresponding objective vector on the basis of which a fitness
value is assigned toiii .

Recombination and mutation aim at generating new solutions within the
search space by the variation of existing ones. The crossover operator takes
a certain number of parents and creates a certain number of children by recom-
bining the parents. To mimic the stochastic nature of evolution, a crossover
probability is associated with this operator. By contrast, the mutation operator
modifies individuals by changing small parts in the associated vectors accord-
ing to a given mutation rate. Both crossover and mutation operator work on
individuals, i.e., in individual space, and not on the decoded decision vectors.

Based on the above concepts, natural evolution is simulated by an iterative
computation process. First, an initial population is created at random (or ac-
cording to a predefined scheme), which is the starting point of the evolution
process. Then a loop consisting of the steps evaluation (fitness assignment), se-
lection, recombination, and/or mutation is executed a certain number of times.
Each loop iteration is called ageneration, and often a predefined maximum
number of generations serves as the termination criterion of the loop. But also
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Fig. 4: Relation between individual space, decision space, and objective space.

other conditions, e.g., stagnation in the population or existence of an individual
with sufficient quality, may be used to stop the simulation. At the end, the best
individual(s) in the final population or found during the entire evolution process
is the outcome of the EA.

In the following, the basic structure of an EA, as it is used throughout this
work, is formalized. The populationPPP at a certain generationt is represented
by the symbolPPPt , and the symbol+ stands for multi-set union in conjunction
with populations.

Alg. 1: (General Evolutionary Algorithm)

Input: N (population size)
T (maximum number of generations)
pc (crossover probability)
pm (mutation rate)

Output: AAA (nondominated set)

Step 1: Initialization : Set PPP0 = ∅ and t = 0. For i = 1, . . . , N do

a) Choose iii ∈ III according to some probability distribution.

b) Set PPP0 = PPP0 + {iii }.
Step 2: Fitness assignment: For each individual iii ∈ PPPt determine the en-

coded decision vector xxx = mmm(iii ) as well as the objective vector yyy =
fff (xxx) and calculate the scalar fitness value F(iii ).

Step 3: Selection: Set PPP′ = ∅. For i = 1, . . . , N do

a) Select one individual iii ∈ PPPt according to a given scheme and
based on its fitness value F(iii ).
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b) Set PPP′ = PPP′ + {iii }.
The temporary population PPP′ is called themating pool.

Step 4: Recombination: Set PPP′′ = ∅. For i = 1, . . . , N
2 do

a) Choose two individuals iii , jjj ∈ PPP′ and remove them from PPP′.
b) Recombine iii and jjj . The resulting children are kkk, lll ∈ III .

c) Add kkk, lll to PPP′′ with probability pc. Otherwise add iii , jjj to PPP′′.

Step 5: Mutation: Set PPP′′′ = ∅. For each individual iii ∈ PPP′′ do

a) Mutate iii with mutation rate pm. The resulting individual is jjj ∈
III .

b) Set PPP′′′ = PPP′′′ + { jjj }.
Step 6: Termination: Set PPPt+1 = PPP′′′ and t = t + 1. If t ≥ T or an-

other stopping criterion is satisfied then set AAA = p(mmm(PPPt )) else go to
Step 2.

It must be emphasized that this algorithm does not reflect an EA in its most
general form as, e.g., the population size need not be restricted and recombi-
nation can also involve more than two parents. Moreover, a large number of
selection, crossover, and mutation operators have been proposed for different
representations, applications, etc. which, however, are not presented here. A
thorough discussion of the various aspects of EAs can be found in the following
standard introductory material (Goldberg 1989; Koza 1992; Fogel 1995; B¨ack
1996; Mitchell 1996).

2.2 Key Issues in Multiobjective Search
As mentioned at the beginning of this chapter, with an MOP the optimization
goal itself consists of multiple objectives. According to the three objectives
listed on page 19, two major problems must be addressed when an EA is applied
to multiobjective optimization:

1. How to accomplish fitness assignment and selection, respectively, in order to
guide the search towards the Pareto-optimal set.

2. How to maintain a diverse population in order to prevent premature convergence
and achieve a well distributed and well spread nondominated set.

In the following, a categorization of general techniques which deal with these
issues is presented. The focus here is on cooperative population searches where
only one optimization run is performed in order to approximate the Pareto-
optimal set. Moreover, another issue, elitism, is briefly discussed since it is
different and more complicated with MOPs than with SOPs.
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2.2.1 Fitness Assignment and Selection

In contrast to single-objective optimization, where objective function and fitness
function are often identical, both fitness assignment and selection must allow for
several objectives with MOPs. In general, one can distinguish MOEAs where
the objectives are considered separately, approaches that are based on the clas-
sical aggregation techniques, and methods which make direct use of the concept
of Pareto dominance.

2.2.1.1 Selection by Switching Objectives

Instead of combining the objectives into a single scalar fitness value, this class
of MOEAs switches between the objectives during the selection phase. Each
time an individual is chosen for reproduction, potentially a different objective
will decide which member of the population will be copied into the mating pool.
As a consequence, Steps 2 and 3 of the general EA flow on page 21 are usually
integrated or executed alternately.

For example, Schaffer (1985) proposed filling equal portions of the mating
pool according to the distinct objectives, while Fourman (1985) implemented a
selection scheme where individuals are compared with regard to a specific (or
random) order of the objectives. Later, Kursawe (1991) suggested assigning a
probability to each objective which determines whether the objective will be the
sorting criterion in the next selection step—the probabilities can be user-defined
or chosen randomly over time. All of these approaches may have a bias towards
“extreme” solutions and be sensitive to non-convex Pareto-optimal fronts (Horn
1997).

2.2.1.2 Aggregation Selection with Parameter Variation

Other MOEA implementations build on the traditional techniques for generat-
ing trade-off surfaces (cf. Section 1.2). As with these methods, the objectives
are aggregated into a single parameterized objective function; however, the pa-
rameters of this function are not changed for different optimization runs, but in-
stead systematically varied during the same run. Some approaches (Hajela and
Lin 1992)(Ishibuchi and Murata 1996), for instance, use the weighting method.
Since each individual is assessed using a particular weight combination (either
encoded in the individual or chosen at random), all members of the population
are evaluated by a different objective function. Hence, optimization is done in
multiple directions simultaneously. Nevertheless, the potential disadvantages of
the underlying scalarization method (e.g., a bias towards convex portions of the
Pareto-optimal front) may restrict the effectiveness of such MOEAs (Veldhuizen
1999).

2.2.1.3 Pareto-based Selection

The concept of calculating an individual’s fitness on the basis of Pareto domi-
nance was first suggested by Goldberg (1989). He presented a “revolutionary
10-line sketch” (Deb 1999b) of an iterative ranking procedure: First all non-
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dominated individuals are assigned rank one and temporarily removed from the
population. Then, the next nondominated individuals are assigned rank two and
so forth. Finally, the rank of an individual determines its fitness value. Re-
markable here is the fact that fitness is related to the whole population, while
with other aggregation techniques an individual’s raw fitness value is calculated
independently of other individuals.

This idea has been taken up by numerous researchers, resulting in sev-
eral Pareto-based fitness assignment schemes, e.g, (Fonseca and Fleming 1993;
Horn, Nafpliotis, and Goldberg 1994; Srinivas and Deb 1994). Although this
class of MOEAs is theoretically capable of finding any Pareto-optimal solution,
the dimensionality of the search space may influence its performance, as noted
by Fonseca and Fleming (1995b):

”[. . . ] purePareto EAs cannot be expected to perform well on problems
involving many competing objectives and may simply fail to produce sat-
isfactory solutions due to the large dimensionality and the size of the
trade-off surface.”

Even so, Pareto-based techniques seem to be most popular in the field of evolu-
tionary multiobjective optimization (Veldhuizen and Lamont 1998b).

2.2.2 Population Diversity

In order to approximate the Pareto-optimal set in a single optimization run,
evolutionary optimizers have to perform a multimodal search where multiple,
widely different solutions are to be found. Therefore, maintaining a diverse
population is crucial for the efficacy of an MOEA. Unfortunately, a simple (eli-
tist) EA tends to converge towards a single solution and often loses solutions due
to three effects (Mahfoud 1995): selection pressure, selection noise, and opera-
tor disruption. The selection pressure is often defined in terms of the takeover
time, i.e., the time required until the population is completely filled by the best
individual when only selection takes place (B¨ack 1996). Selection noise refers
to the variance of a selection scheme, while operator disruption relates to the de-
structive effects which recombination and mutation may have (e.g., high-quality
individuals may be disrupted). To overcome this problem, several methods have
been developed; the ones most frequently used in evolutionary multiobjective
optimization are briefly summarized here.

2.2.2.1 Fitness Sharing

Fitness sharing(Goldberg and Richardson 1987), which is the most frequently
used technique, aims at promoting the formulation and maintenance of stable
subpopulations (niches). It is based on the idea that individuals in a particular
niche have to share the available resources. The more individuals are located in
the neighborhood of a certain individual, the more its fitness value is degraded.
The neighborhood is defined in terms of a distance measured(iii , jjj ) and speci-
fied by the so-calledniche radiusσshare. Mathematically, the shared fitnessF(iii )
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of an individualiii ∈ PPP is equal to its old fitnessF ′(iii ) divided by itsniche count:

F(iii ) = F ′(iii )∑
jjj∈PPP s(d(iii , jjj ))

(2.1)

An individual’s niche count is the sum ofsharing function(s) values between
itself and the individuals in the population. A commonly-used sharing function
is

s(d(iii , jjj )) =
{

1 −
(

d(iii , jjj )
σshare

)α

if d(iii , jjj ) < σshare

0 otherwise
(2.2)

Furthermore, depending on how the distance functiond(iii , jjj ) is defined, one
distinguishes three types of sharing:

1. fitness sharing in individual space (d(iii , jjj ) = ‖iii − jjj ‖),

2. fitness sharing in decision space (d(iii , jjj ) = ‖mmm(iii ) − mmm( jjj )‖), and

3. fitness sharing in objective space (d(iii , jjj ) = ‖ fff (mmm(iii )) − fff (mmm( jjj ))‖),

where‖ · ‖ denotes an appropriate distance metric. Currently, most MOEAs im-
plement fitness sharing, e.g., (Hajela and Lin 1992; Fonseca and Fleming 1993;
Horn, Nafpliotis, and Goldberg 1994; Srinivas and Deb 1994; Greenwood, Hu,
and D’Ambrosio 1996; Todd and Sen 1997; Cunha, Oliviera, and Covas 1997).

2.2.2.2 Restricted Mating

Basically, two individuals are allowed to mate only if they are within a certain
distance of each other (given by the parameterσmate). As with fitness shar-
ing, the distance of two individuals can be defined in individual space, decision
space, or objective space. This mechanism may avoid the formation of lethal in-
dividuals and therefore improve the online performance. Nevertheless, as men-
tioned in (Fonseca and Fleming 1995b), it does not appear to be widespread in
the field of MOEAs, e.g., (Hajela and Lin 1992; Fonseca and Fleming 1993;
Loughlin and Ranjithan 1997).

2.2.2.3 Isolation by Distance

This type of diversity mechanism assigns each individual a location (Ryan 1995)
where in general two approaches can be distinguished. Either a spatial structure
is defined on one population such that spatial niches can evolve in the same
population, or there are several distinct populations which only occasionally
exchange individuals (migration). Poloni (1995), for instance, used a distributed
EA with multiple small populations, while Laumanns, Rudolph, and Schwefel
(1998) structured the population by an underlying graph, a two-dimensional
torus, where each individual is associated with a different node.
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2.2.2.4 Overspecification

With this method, the individual contains active and inactive parts: the for-
mer specify the encoded decision vector, the latter are redundant and have no
function. Since inactive parts can become active and vice versa during the evo-
lution, information can be hidden in an individual. Diploidy (Goldberg 1989) is
an example of overspecification that is used in the MOEA proposed by Kursawe
(1991).

2.2.2.5 Reinitialization

Another technique to prevent premature convergence is to reinitialize the whole
or parts of the population after a certain period of time or whenever the search
stagnates. For example, Fonseca and Fleming (1998a) presented a unified for-
mulation of evolutionary multiobjective optimization where at each generation
a small number of random immigrants is introduced in the population.

2.2.2.6 Crowding

Finally, crowding(De Jong 1975) and its derivates seem to be rather seldomly
implemented in MOEAs, e.g., (Blickle 1996). Here, new individuals (children)
replace similar individuals in the population. In contrast to Algorithm 1, not the
whole population is processed by selection, recombination, and mutation, but
only a few individuals are considered at a time.

2.2.3 Elitism

De Jong (1975) suggested a policy to always include the best individual ofPPPt

into PPPt+1 in order to prevent losing it due to sampling effects or operator dis-
ruption. This strategy, which can be extended to copy theb best solutions to the
next generation, is denoted aselitism. In his experiments, De Jong found that
elitism can improve the performance of a genetic algorithm on unimodal func-
tions, while with multimodal functions it may cause premature convergence.
In evolutionary multiobjective optimization, elitism plays an important role, as
will be shown in the next chapter.

As opposed to single-objective optimization, the incorporation of elitism in
MOEAs is substantially more complex. Instead of one best individual, there
is an elite set whose size can be considerable compared to the population, for
instance, when the Pareto-optimal set contains an infinite number of solutions.
This fact involves two questions which must be answered in this context:

• Population H⇒ Elite Set:
Which individuals are kept for how long in the elite set?

• Elite SetH⇒ Population:
When and how are which members of the elite set re-inserted into the popula-
tion?

In general, two basic elitist approaches can be found in MOEA literature. One
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strategy, which directly uses De Jong’s idea, is to copy those individuals from
PPPt automatically toPPPt+1 whose encoded decision vectors are nondominated
regardingmmm(PPPt ) (Tamaki, Mori, Araki, Mishima, and Ogai 1994). Sometimes
a more restricted variant is implemented where only thek individuals whose
corresponding objective vectors maximize one of thek objectives constitute the
elite set (Anderson and Lawrence 1996; Murata, Ishibuchi, and Tanaka 1996;
Todd and Sen 1997). Also the so-called (λ + µ) selection mainly used in the
area of evolutionary strategies (B¨ack 1996) belongs to this class of elitist strate-
gies. For example, Rudolph (1998) examined a simplified version of the MOEA
originally presented in (Kursawe 1991) which is based on (1+1) selection.

Often used is also the concept of maintaining an external setPPP of indi-
viduals whose encoded decision vectors are nondominated among all solutions
generated so far. In each generation, a certain percentage of the population is
filled up or replaced by members of the external set—these members are either
selected at random (Cieniawski, Eheart, and Ranjithan 1995; Ishibuchi and Mu-
rata 1996) or according to other criteria, such as the period that an individual
has stayed in the set (Parks and Miller 1998). Since the external set may be con-
siderably larger than the population, Parks and Miller (1998) only allow those
individuals to be copied into the elite set which are sufficiently dissimilar to the
existing elite set members.

Occasionally, both of the above two elitist policies are applied (Murata,
Ishibuchi, and Tanaka 1996; Todd and Sen 1997).

2.3 Overview of Evolutionary Techniques
Five of the most salient MOEAs have been chosen for the comparative studies
which will be presented in the next chapter. A brief summary of their main fea-
tures and their differences is given in the following. For a thorough discussion
of different evolutionary approaches to multiobjective optimization, the inter-
ested reader is referred to (Fonseca and Fleming 1995b; Horn 1997; Veldhuizen
and Lamont 1998b; Coello 1999a).

2.3.1 Schaffer’s Vector Evaluated Genetic Algorithm

Schaffer (1984, 1985) presented an MOEA calledvector evaluated genetic al-
gorithm(VEGA) which is a representative of the category selection by switch-
ing objectives. Here, selection is done for each of thek objectives separately,
filling equally sized portions of the mating pool. That is, Steps 2 and 3 of
Algorithm 1 are executedk times per generation, respectively replaced by the
following algorithm:

Alg. 2: (Fitness Assignment and Selection in VEGA)

Input: PPPt (population)
Output: PPP′ (mating pool)
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Fig. 5: Illustration of six different selection mechanisms in objective space.
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Step 1: Set i= 1 and mating pool PPP′ = ∅.

Step 2: For each individual iii ∈ PPPt do F(iii ) = fi (mmm(iii )).

Step 3: For j = 1, . . . , N/k do select individual iii from PPPt according to a
given scheme and copy it to the mating pool: PPP′ = PPP′ + {iii }.

Step 4: Set i= i + 1.

Step 5: If i ≤ k then go to Step 2 else stop.

This mechanism is graphically depicted in Figure 5a where the best individ-
uals in each dimension are chosen for reproduction. Afterwards, the mating
pool is shuffled and crossover and mutation are performed as usual. Schaffer
implemented this method in combination with fitness proportionate selection
(Goldberg 1989).

Although some serious drawbacks are known (Schaffer 1985; Fonseca and
Fleming 1995b; Horn 1997), this algorithm has been a strong point of reference
up to now. Therefore, it has been included in this investigation.

2.3.2 Hajela and Lin’s Weighting-based Genetic Algorithm

Another approach, which belongs to the category aggregation selection with
parameter variation, was introduced in (Hajela and Lin 1992) (in the following
referred to as HLGA—Hajela and Lin’s genetic algorithm). It is based on the
weighting method, and to search for multiple solutions in parallel, the weights
are not fixed but instead encoded in the individual’s vector. Hence, each indi-
vidual is evaluated with regard to a potentially different weight combination (cf.
Figure 5b). In detail, the fitness assignment procedure (Step 2 in Algorithm 1)
is as follows:

Alg. 3: (Fitness Assignment in HLGA)

Input: PPPt (population)
Output: F (fitness values)

Step 1: For each individual iii ∈ PPPt do

a) Extract weightsw j ( j = 1, . . . , k) from iii .

b) Set F(iii ) = w1 · f1(mmm(iii )) + . . . + wk · fk(mmm(iii )).

The diversity of the weight combinations is promoted by fitness sharing in ob-
jective space. As a consequence, the EA evolves solutions and weight com-
binations simultaneously. Finally, Hajela and Lin (1992) emphasized mating
restrictions to be necessary in order to “both speed convergence and impart sta-
bility to the genetic search”.

It has been mentioned before that the weighting method is inherently biased
towards convex portions of the trade-off front, which is consequently also a
problem with HLGA. Nevertheless, weighted-sum aggregation appears still to
be widespread due to its simplicity. HLGA has been chosen to represent this
class of MOEAs.
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2.3.3 Fonseca and Fleming’s Multiobjective Genetic Algorithm

Fonseca and Fleming (1993) proposed a Pareto-based ranking procedure (here
the acronym FFGA is used), where an individual’s rank equals the number of
solutions encoded in the population by which its corresponding decision vector
is dominated. The fitness assignment procedure (Step 2 in Algorithm 1), which
slightly differs from Goldberg’s suggestion (cf. Section 2.2.1.3), consists of
three steps:

Alg. 4: (Fitness Assignment in FFGA)

Input: PPPt (population)
σshare (niche radius)

Output: F (fitness values)

Step 1: For each iii ∈ PPPt calculate its rank: r(iii ) = 1+|{ jjj | jjj ∈ PPPt ∧ jjj � iii }|.
Step 2: Sort population according to the ranking r. Assign each iii ∈ PPPt a raw

fitness F′(iii ) by interpolating from the best (r(iii ) = 1) to the worst
individual (r(iii ) ≤ N); in this work linear ranking (Baker 1985) is
used.

Step 3: Calculate fitness values F(iii ) by averaging and sharing the raw fitness
values F′(iii ) among individuals iii ∈ PPPt having identical ranks r(iii )
(fitness sharing in objective space).

Note that the symbol| · | used in Step 1 denotes the number of elements inZ in
conjunction with a (multi) setZ.

In Figure 5c, a hypothetical population and the corresponding ranks of the
individuals are shown. The individuals whose associated solutions are nondom-
inated regardingmmm(PPP) have rank 1 while the worst individual was assigned
rank 10. Based on the ranks, the mating pool is filled using stochastic universal
sampling (Baker 1987).

The basic concept has been extended meanwhile by, e.g., adaptive fitness
sharing and continuous introduction of random immigrants (Fonseca and Flem-
ing 1995a; Fonseca and Fleming 1998a), which is, however, not regarded here.

2.3.4 Horn, Nafpliotis, and Goldberg’s Niched Pareto Genetic Algorithm

The niched Pareto genetic algorithm (NPGA) proposed in (Horn and Nafplio-
tis 1993)(Horn, Nafpliotis, and Goldberg 1994) combines tournament selection
(Blickle and Thiele 1996) and the concept of Pareto dominance in the following
way (Steps 2 and 3 of Algorithm 1):

Alg. 5: (Fitness Assignment and Selection in NPGA)

Input: PPPt (population)
σshare (niche radius)
tdom (domination pressure)

Output: PPP′ (mating pool)
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Step 1: Set i= 1 and mating pool PPP′ = ∅.

Step 2: Select two competitors iii , jjj ∈ PPPt and a comparison set PPPdom ⊆ PPPt

of tdom individuals at random (without replacement).

Step 3: If mmm(iii ) is nondominated regarding mmm(PPPdom) and mmm( jjj ) is not then iii
is the winner of the tournament: PPP′ = PPP′ + {iii }.

Step 4: Else if mmm( jjj ) is nondominated regarding mmm(PPPdom) and mmm(iii ) is not
then jjj is the winner of the tournament: PPP′ = PPP′ + { jjj }.

Step 5: Else decide tournament by fitness sharing:

a) Calculate the number of individuals in the partially filled mating
pool that are inσshare-distance to iii : n(iii ) = |{kkk | kkk ∈ PPP′ ∧
d(iii , kkk) < σshare}|. Do the same for jjj .

b) If n(iii ) < n( jjj ) then PPP′ = PPP′ + {iii } else PPP′ = PPP′ + { jjj }.
Step 6: Set i= i + 1. If i ≤ N then go to Step 2 else stop.

The slightly modified scheme of fitness sharing which is implemented in Step 4
operates in the objective space.

The mechanism of the binary Pareto tournaments is illustrated in Figure 5d:
two competing individuals and a set oftdom individuals are compared. The
competitor represented by the white point is the winner of the tournament since
the encoded decision vector is not dominated with regard to the comparison set
in contrast to the other competitor.

2.3.5 Srinivas and Deb’s Nondominated Sorting Genetic Algorithm

Among the Pareto-based MOEAs, Srinivas and Deb (1994) have implemented
Goldberg’s sketch most directly. The different trade-off fronts in the population
are, figuratively speaking, peeled off step by step (cf. Figure 5e), and fitness
sharing is performed for each front separately in order to maintain diversity.
In detail, fitness assignment is accomplished by an iterative process (Step 2 in
Algorithm 1):

Alg. 6: (Fitness Assignment in NSGA)

Input: PPPt (population)
σshare (niche radius)

Output: F (fitness values)

Step 1: Set PPPremain = PPPt and initialize the dummy fitness value Fd with N.

Step 2: Determine set PPPnondomof individuals in PPPremain whose decision vec-
tors are nondominated regarding mmm(PPPremain). Ignore them in the fur-
ther classification process, i.e., PPPremain = PPPremain− PPPnondom(multi-
set subtraction).

Step 3: Set raw fitness of individuals in PPPnondom to Fd and perform fitness
sharing in decision space, however, onlywithin PPPnondom.
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Step 4: Decrease the dummy fitness value Fd such that it is lower than the
smallest fitness in PPPnondom: 0 < Fd < min{F(iii ) | iii ∈ PPPnondom}.

Step 5: If PPPremain 6= ∅ then go to Step 2 else stop.

Note that high fitness values correspond here to high reproduction probabilities
and that fitness sharing is done in decision space, which is contrary to FFGA and
NPGA. In the original study (Srinivas and Deb 1994), this fitness assignment
method was combined with a stochastic remainder selection (Goldberg 1989).

2.4 Strength Pareto Evolutionary Algorithm

Here, a new approach to multiobjective optimization, thestrength Pareto evolu-
tionary algorithm(SPEA), is introduced.1 SPEA uses a mixture of established
and new techniques in order to approximate the Pareto-optimal set. On one
hand, similarly to other MOEAs, it

• stores those individuals externally that represent a nondominated front among
all solutions considered so far (cf. Section 2.2.3);

• uses the concept of Pareto dominance in order to assign scalar fitness values to
individuals; and

• performs clustering to reduce the number of individuals externally stored with-
out destroying the characteristics of the trade-off front.

On the other hand, SPEA is unique in four respects:

• It combines the above three techniques in a single algorithm.

• The fitness of a population member is determined only from the individuals
stored in the external set; whether individuals in the population dominate each
other is irrelevant.

• All individuals in the external set participate in selection.

• A new Pareto-based niching method is provided in order to preserve diversity
in the population.

The flow of the algorithm is as follows (the recombination and mutation
steps are identical to Algorithm 1).

1This algorithm was first published in (Zitzler and Thiele 1998a) and subsequently in (Zit-
zler and Thiele 1999) and has been discussed by different researchers (Deb 1998; Deb 1999b;
Veldhuizen 1999).
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Alg. 7: (Strength Pareto Evolutionary Algorithm)

Input: N (population size)
N (maximum size of external set)
T (maximum number of generations)
pc (crossover probability)
pm (mutation rate)

Output: AAA (nondominated set)

Step 1: Initialization : Generate an initial population PPP0 according to Step 1
in Algorithm 1 and create the empty external setPPP0 = ∅. Set t= 0.

Step 2: Update of external set: Set the temporary external setPPP
′ = PPPt .

a) Copy individuals whose decision vectors are nondominated re-
garding mmm(PPPt ) to PPP

′
: PPP

′ = PPP
′ + {iii | iii ∈ PPPt ∧ mmm(iii ) ∈

p(mmm(PPPt ))}.
b) Remove individuals fromPPP

′
whose corresponding decision vec-

tors are weakly dominated regarding mmm(PPP
′
), i.e., as long as

there exists a pair(iii , jjj ) with iii , jjj ∈ PPP
′

and mmm(iii ) � mmm( jjj ) do
PPP

′ = PPP
′ − { jjj }.

c) Reduce the number of individuals externally stored by means of
clustering, i.e., call Algorithm 9 with parametersPPP

′
andN, and

assign the resulting reduced set toPPPt+1.

Step 3: Fitness assignment: Calculate fitness values of individuals in PPPt and
PPPt by invoking Algorithm 8.

Step 4: Selection: Set PPP′ = ∅. For i = 1, . . . , N do

a) Select two individuals iii , jjj ∈ PPPt + PPPt at random.

b) If F(iii ) < F( jjj ) then PPP′ = PPP′ + {iii } else PPP′ = PPP′ + { jjj }. Note
that fitness is to be minimized here (cf. Section 2.4.1).

Step 5: Recombination: . . .

Step 6: Mutation: . . .

Step 7: Termination: Set PPPt+1 = PPP′′′ and t = t + 1. If t ≥ T or an-
other stopping criterion is satisfied then set AAA = p(mmm(PPPt )) else go to
Step 2.

The main loop of the algorithm is outlined in Figure 6. At the beginning
of each loop iteration (Step 2), the external setPPP is updated and reduced if
its maximum sizeN is overstepped. Then, individuals inPPP and PPP are eval-
uated interdependently from each other and assigned fitness values. The next
step represents the selection phase where individuals fromPPP + PPP, the union of
population and external set, are selected in order to fill the mating pool—here,
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Fig. 6: Basic steps in the strength Pareto evolutionary algorithm. The numbers of the steps are
in accordance with Algorithm 7.

binary tournament selection with replacement is used. Finally, crossover and
mutation operators are applied as usual.

In the next two sections, the fitness assignment mechanism (Algorithm 8) as
well as the clustering procedure (Algorithm 9) are described in detail.

2.4.1 Fitness Assignment

The fitness assignment procedure is a two-stage process. First, the individuals
in the external setPPP are ranked. Afterwards, the individuals in the populationPPP
are evaluated. The following procedure corresponds to Step 2 in Algorithm 1.

Alg. 8: (Fitness Assignment in SPEA)

Input: PPPt (population)
PPPt (external set)

Output: F (fitness values)

Step 1: Each individual iii ∈ PPPt is assigned a real value S(iii ) ∈ [0, 1), called
strength2; S(iii ) is proportional to the number of population members

2This term is adopted from (Holland 1992) where it was introduced in the context of classi-
fier systems; it stands for a quantity summarizing the usefulness of a rule. Here, it reflects the
usefulness of a nondominated solution.
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jjj ∈ PPPt for which mmm(iii ) � mmm( jjj ):

S(iii ) = |{ jjj | jjj ∈ PPPt ∧ mmm(iii ) � mmm( jjj )}|
N + 1

The fitness of iii is equal to its strength: F(iii ) = S(iii ).

Step 2: The fitness of an individual jjj ∈ PPPt is calculated by summing the
strengths of all externally stored individuals iii ∈ PPPt whose decision
vectors weakly dominate mmm( jjj ). We add one to the total in order to
guarantee that members ofPPPt have better fitness than members of
PPPt (note that fitness is to be minimized here, i.e., small fitness values
correspond to high reproduction probabilities):

F( jjj ) = 1 +
∑

iii ∈PPPt ,mmm(iii )�mmm( jjj )

S(iii ) where F( jjj ) ∈ [1, N).

To make the effect of this ranking method clear, take a look at Figure 5f.
Graphically, the objective space which is dominated by the five decision vectors
represented by the white points is divided into distinct rectangles. Each subset
PPP′ of PPP defines one such rectangle which represents the region in the objective
space dominated by all decision vectors inmmm(PPP′) in common. For instance,
the dark-shaded rectangle in the lower-left corner is dominated by all decision
vectors inmmm(PPP), while the upper-left bright-shaded rectangle is only dominated
by onexxx ∈ mmm(PPP). These rectangles are considered as niches, and the goal is to
distribute the individuals over this “grid” such that

a) (brighter-shaded) rectangles dominated by only a fewxxx ∈ PPP contain more
individuals than (darker-shaded) rectangles that are dominated by manyxxx ∈ PPP,
and

b) a rectangle comprises as many individuals as other (equally-shaded) rectangles
which are dominated by the same number of decision vectors inmmm(PPP).

This mechanism intuitively reflects the idea of preferring individuals near the
Pareto-optimal front and distributing them at the same time along the trade-off
surface. In Figure 5f, the first aspect can be easily seen: individuals located in
the bright rectangles achieve better fitness values than the remaining population
members. To demonstrate the second aspect, imagine three more objective vec-
tors plotted in the lower rectangle containing one individual with fitness the 9/6
(cf. Figure 7). The corresponding externally stored individualiii gets “stronger”
(S(iii ) = 6/9), and as a result, the crowded niche is diminished relatively in
fitness (15/9), while the individual in the other of the two rectangles improves
(12/9).

The main difference with fitness sharing is that niches are not defined in
terms of distance but Pareto dominance. This renders the setting of a distance
parameter superfluous, although the parameterN influences the niching capa-
bility, as will be discussed in the next section. Furthermore, it has to be men-
tioned that this kind of fitness assignment using two interacting populations has
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Fig. 7: Demonstration of the niching mechanism used in SPEA. By adding three individuals
to a particular niche, the reproduction probabilities of the niche members are decreased
(i.e., the fitness values are increased).

been inspired by (Forrest and Perelson 1991; Smith and Forrest 1992; Smith,
Forrest, and Perelson 1993; Forrest, Javornik, Smith, and Perelson 1993; Pare-
dis 1995). Paredis (1995) studied the use of cooperating populations in EAs
and showed that symbiotic evolution can speed up the search process. In (For-
rest and Perelson 1991; Smith and Forrest 1992; Smith, Forrest, and Perelson
1993; Forrest, Javornik, Smith, and Perelson 1993), a similar concept was ap-
plied to immune system models in which two cooperative populations were used
to maintain population diversity; Smith, Forrest, and Perelson (1993) reported
that this method has emergent properties which are similar to fitness sharing.
However, preliminary investigations indicated that it is difficult to directly use
these concepts in evolutionary multiobjective optimization. Two implementa-
tions, which were based on the above ideas, were found to not sufficiently cover
the Pareto-optimal set with a simple test function proposed by Schaffer (1984)
(cf. next section).

2.4.2 Reducing the Nondominated Set by Clustering

In certain problems, the Pareto-optimal set can be extremely large or even con-
tain an infinite number of solutions. However, from the DM’s point of view, pre-
senting all nondominated solutions found is useless when their number exceeds
reasonable bounds. Moreover, the size of the external set influences the behavior
of SPEA. On the one hand, sincePPP participates in selection, too many external
individuals might reduce selection pressure and slow down the search (Cunha,
Oliviera, and Covas 1997). On the other hand, the strength niching mechanism
relies on a uniform granularity of the “grid” defined by the external set. If the
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Fig. 8: The principles of pruning a nondominated set: i) solutions close to each other are
grouped into clusters, ii) per cluster a representative solution is determined, and iii) the
remaining solutions are removed from the set. Note that here clustering is performed in
objective space, although distance may also be defined in decision space or individual
space.

individuals in PPP are not distributed uniformly, the fitness assignment method
is potentially biased towards certain regions of the search space, leading to an
unbalance in the population. Thus, pruning the external set while maintaining
its characteristics might be necessary or even mandatory.

A method which has been applied to this problem successfully and studied
extensively in the same context is cluster analysis (Morse 1980)(Rosenman and
Gero 1985). In general, cluster analysis partitions a collection ofp elements
into q groups of relatively homogeneous elements, whereq < p. The aver-
age linkage method, a clustering approach that has proven to perform well on
this problem (Morse 1980), has been chosen here. The underlying principle is
illustrated in Figure 8.

Alg. 9: (Clustering)

Input: PPP
′

(external set)
N (maximum size of external set)

Output: PPPt+1 (updated external set)

Step 1: Initialize cluster set C; each individual iii ∈ PPP
′
constitutes a distinct

cluster: C= ⋃
iii ∈PPP

′ {{iii }}.
Step 2: If |C| ≤ N, go to Step 5, else go to Step 3.

Step 3: Calculate the distance of all possible pairs of clusters. The distance
dc of two clusters c1 and c2 ∈ C is given as the average distance
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between pairs of individuals across the two clusters

dc = 1

|c1| · |c2| ·
∑

iii 1∈c1,iii 2∈c2

d(iii 1, iii 2)

where the function d reflects the distance between two individuals iii 1

and iii 2 (here the distance in objective space is used).

Step 4: Determine two clusters c1 and c2 with minimal distance dc; the chosen
clusters amalgamate into a larger cluster: C= C\{c1, c2}∪{c1∪c2}.
Go to Step 2.

Step 5: Per cluster, select a representative individual and remove all other
individuals from the cluster . We consider the centroid (the point with
minimal average distance to all other points in the cluster) as the
representative individual. Compute the reduced nondominated set by
uniting the representatives of the clusters:PPPt+1 = ⋃

c∈C c.

The effect of this clustering procedure is demonstrated in Figure 9, which
shows the outcomes of three SPEA runs and one VEGA run on a simple test
function used by Schaffer (1984):

minimize fff (x) = ( f1(x), f2(x))

subject to f1(x) = x2

f2(x) = (x − 2)2
(2.3)

The Pareto-optimal setXXX p consists of all solutions 0≤ x ≤ 2, the corre-
sponding trade-off front isYYYp = {(y1, y2) ∈ YYY f | 0 ≤ y1 ≤ 4 ∧ 0 ≤ y2 ≤ 4}.
For SPEA three different combinations of population size and external set size
were tried (95/5, 70/30, 30/70), where in each caseN+N = 100, while VEGA
used a population size of 100.3 As can be observed from Figure 9, the objec-
tive vectors represented by the external set well approximate the Pareto-optimal
front depending on the parameterN. Moreover, in comparison to VEGA, SPEA
evolved more Pareto-optimal solutions and distributed them more uniformly
along the trade-off front.

Cunha et al. (Cunha, Oliviera, and Covas 1997) also combined a MOEA
with a clustering approach in order to achieve reasonably sized nondominated
sets. This algorithm, however, uses a different clustering method which has
been proposed in (Rosenman and Gero 1985); thereby, for each objective, a
tolerance value must specified. Moreover, it differs from SPEA with regard to
the following two aspects: i) no external set is maintained, and ii) fitness sharing
is incorporated to preserve diversity in the population.

3A 14-bit vector was used to encode real numbers between−6 and 6; the other parameters
were: pc = 1, pm = 0, andT = 100. Furthermore, each run was performed using the same
initial population. Although only limited weight can be given to a single run per parameter
combination, the results looked similar when the simulations were repeated with different initial
populations.
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Fig. 9: Performance of SPEA and VEGA on Schaffer’s test function. With SPEA the boxes
represent the individuals included in the external set at the end of each run; with VEGA
all nondominated solutionsxxx ∈ p(mmm(∪T

t=0PPPt )) are plotted in objective space.

2.5 Universal Elitism Scheme
The elitism mechanism used in SPEA can be generalized for incorporation in
arbitrary MOEA implementations. The only difference is that the population
and the external set are already united before (and not after) the fitness assign-
ment phase. This guarantees that any fitness assignment scheme can be used in
combination with this elitism variant. The general algorithm is presented below,
where Steps 4 to 7 are identical to the corresponding steps in Algorithm 1.

Alg. 10: (General Elitist Multiobjective Evolutionary Algorithm)

Input: N (population size)
N (maximum size of external set)
T (maximum number of generations)
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pc (crossover probability)
pm (mutation rate)

Output: AAA (nondominated set)

Step 1: Initialization : Set PPP0 = ∅ and t = 0. Initialize PPP0 according to
Step 1 in Algorithm 1.

Step 2: Update of external set: Set the temporary external setPPP
′ = PPPt .

a) Copy individuals whose decision vectors are nondominated re-
garding mmm(PPPt ) to PPP

′
: PPP

′ = PPP
′ + {iii | iii ∈ PPPt ∧ mmm(iii ) ∈

p(mmm(PPPt ))}.
b) Remove individuals fromPPP

′
whose corresponding decision vec-

tors are weakly dominated regarding mmm(PPP
′
), i.e., as long as

there exists a pair(iii , jjj ) with iii , jjj ∈ PPP
′

and mmm(iii ) � mmm( jjj ) do
PPP

′ = PPP
′ − { jjj }.

c) Reduce the number of individuals externally stored by means of
clustering, i.e., call Algorithm 9 with parametersPPP

′
andN, and

assign the resulting reduced set toPPPt+1.

Step 3: Elitism: Set PPPt = PPPt + PPPt .

Step 4: Fitness assignment: . . .

Step 5: Selection: . . .

Step 6: Recombination: . . .

Step 7: Mutation: . . .

Step 8: Termination: Set PPPt+1 = PPP′′′ and t = t + 1. If t ≥ T or an-
other stopping criterion is satisfied then set AAA = p(mmm(PPPt )) else go to
Step 2.

It has to be mentioned that after Step 3 the population is automatically reduced
to its original size by the selection process; onlyN individuals are copied to
the mating pool according to Step 3 of Algorithm 1. Furthermore, note that in
Step 3 not the updated external setPPPt+1 is added to the populationPPPt but the
previous external setPPPt . Some authors (Parks and Miller 1998) use the updated
external set when re-inserting elite set members into the population. As a result,
some good individuals that were members ofPPPt−1 may be lost due to the update
operation.

In the next chapter it is shown that the universal elitism scheme proposed
here can substantially improve the performance of non-elitist MOEAs.



3
Comparison of Selected Evolutionary Approaches

Two kinds of test problems are used in the present work in order to compare
the MOEA implementations discussed in the previous chapter. The first kind
of MOP are NP hard problems (extended to the multiobjective case). Although
easy to formulate and understand, they represent certain classes of real-world
applications and are difficult to solve. Here, the 0/1 knapsack problem and the
traveling salesman problem are considered (Garey and Johnson 1979). Both
problems have been extensively studied, and several publications in the domain
of evolutionary computation are related to the knapsack problem (Khuri, B¨ack,
and Heitkötter 1994; Michalewicz and Arabas 1994; Spillman 1995; Sakawa,
Kato, and Shibano 1996) as well as the traveling salesman problem, e.g., see
(Banzhaf et al. 1999). While these problems are discrete, the second kind of
MOP refers to continuous functions which test for different problem difficulties
separately. This allows specification of which algorithms are suited to which
sort of problem and the determination of areas which cause trouble for particular
techniques.

Besides the choice of appropriate test functions, the performance assessment
by means of quantitative metrics as well as the experimental design are im-
portant issues when comparing multiobjective optimizers. They are discussed
in Section 3.1 and Section 3.2, respectively. Afterwards, the experiments re-
garding the knapsack problem, traveling salesman problem, and continuous test
functions are described separately in Sections 3.3 to 3.5. A summary of the
major results concludes the chapter.
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3.1 Performance Measures

As stated at the beginning of Chapter 2, the optimization goal of an MOP con-
sists itself of three objectives: i) minimal distance to the Pareto-optimal front, ii)
good distribution, and iii) maximum spread. Performance assessment of multi-
objective optimizers should take all of these objectives into account.

3.1.1 Related Work

In the literature, some attempts can be found to formalize the above criteria
by means of quantitative metrics. Performance assessment using the weighting
method was introduced by Esbensen and Kuh (1996). There, a setAAA of deci-
sion vectors is evaluated regarding a given linear combination by determining
the minimum weighted-sum of all corresponding objective vectors ofAAA. Based
on this concept, a sample of linear combinations is chosen at random (with re-
spect to a certain probability distribution) and the minimum weighted-sums for
all linear combinations are summed up and averaged. The resulting value is
taken as a measure of quality. A drawback of this metric is that only the “worst”
solution determines the quality value per linear combination. Although sev-
eral weight combinations are used, non-convex regions of the trade-off surface
contribute to the quality more than convex parts and may, as a consequence,
dominate the performance assessment. Finally, the distribution as well as the
extent of the nondominated front is not considered.

Another interesting way of performance assessment was proposed by Fon-
seca and Fleming (1996). Given a nondominated setAAA ⊆ XXX, a boundary func-
tion divides the objective space into two regions: the region weakly dominated
by AAA and the region corresponding to decision vectors which dominate mem-
bers of AAA. They call this particular function, which can also be seen as the
locus of the family of tightest goal vectors known to be attainable, the attain-
ment surface. Taking multiple optimization runs into account, a method is de-
scribed to compute anx%-attainment surface by using auxiliary straight lines
and sampling their intersections with the attainment surfaces obtained. Here,
the x%-attainment surface represents the family of goal vectors that are likely
to be attained in exactlyx% of the runs (x can be chosen arbitrarily). As a result,
the samples represented by thex%-attainment surface can be assessed relatively
by means of statistical tests and therefore allow comparison of the performance
of two or more multiobjective optimizers. A drawback of this approach is that
it remains unclear how the quality difference can be expressed, i.e., how much
better one algorithm is than another.

In the context of investigations on convergence to the Pareto-optimal set,
some authors (Rudolph 1998; Veldhuizen and Lamont 1998a) have considered
the distance of a given nondominated front to the Pareto-optimal front. The
distribution was not taken into account, because the focus was not on this matter.
However, in comparative studies distance alone is not sufficient for performance
evaluation, since extremely differently distributed fronts may have the same
distance to the Pareto-optimal front.
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3.1.2 Scaling-Independent Measures

In the present work, two complementary measures are used to evaluate the trade-
off fronts produced by the various MOEAs. Both are scaling-independent, i.e.,
they do not require the objective values to be scaled even though the magni-
tude of each objective criterion is quite different. The performance assessment
method by Fonseca and Fleming (1996) is scaling-independent as well, while
the measures used in (Esbensen and Kuh 1996; Rudolph 1998; Veldhuizen and
Lamont 1998a) depend on an appropriate scaling of the objective functions.

The functionS is a measure of how much of the objective space is weakly
dominated by a given nondominated setAAA.

Def. 8: (Size of the dominated space)Let AAA = (xxx1, xxx2, . . . , xxxl ) ⊆ XXX be a set of l
decision vectors. The functionS(AAA) gives the volume enclosed by the union of
the polytopes p1, p2, . . . pl , where each pi is formed by the intersections of the
following hyperplanes arising out of xxxi , along with the axes: for each axis in the
objective space, there exists a hyperplane perpendicular to the axis and passing
through the point( f1(xxxi ), f2(xxxi ), . . . , fk(xxxi )). In the two-dimensional case,
each pi represents a rectangle defined by the points(0, 0) and( f1(xxxi ), f2(xxxi )).1

In (Veldhuizen 1999) it is stated that this metric may be misleading if the Pareto-
optimal front is non-convex. However, independent of whether the trade-off
front is non-convex or convex, different Pareto-optimal solutions may cover
differently large portions of the objective space. In the author’s opinion, the
only conclusion that can be drawn from this fact is that the coverage of the
objective space is only one of several possible criteria to evaluate the quality of
a nondominated front.

An advantage of theS metric is that each MOEA can be assessed indepen-
dently of the other MOEAs. However, theS values of two setsAAA, BBB cannot be
used to derive whether either set entirely dominates the other. Therefore, a sec-
ond measure is introduced here by which two sets can be compared relatively
to each other.

Def. 9: (Coverage of two sets)Let AAA, BBB ⊆ XXX be two sets of decision vectors. The
functionC maps the ordered pair(AAA, BBB) to the interval[0, 1]:

C(AAA, BBB) := |{bbb ∈ BBB | ∃ aaa ∈ AAA : aaa � bbb}|
|BBB| (3.1)

The valueC(AAA, BBB) = 1 means that all decision vectors inBBB are weakly domi-
nated byAAA. The opposite,C(AAA, BBB) = 0, represents the situation when none of
the points inBBB are weakly dominated byAAA. Note that always both directions
have to be considered, sinceC(AAA, BBB) is not necessarily equal to 1− C(BBB, AAA).

1A maximization problem is assumed here where the minimum valuef min
i that objec-

tive fi can take is equal to zero for alli = 1, . . . , k. When ( f min
1 , f min

2 , . . . , f min
k ) 6= 000,

each polytopepi is formed by the points( f min
1 , f min

2 , . . . , f min
k ) (instead of the origin 000)

and ( f1(xxxi ), f2(xxxi ), . . . , fk(xxxi )). Accordingly, the polytopepi is defined by the points
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Fig. 10: Potential problem with theC metric (left) and illustration of the alternativeD metric
(right).

TheS and theC measures, which were first published in (Zitzler and Thiele
1998b) and have been taken up by some researchers meanwhile, e.g., (Lau-
manns, Rudolph, and Schwefel 1999; Coello 1999b; Veldhuizen 1999), are suf-
ficient here as the experimental results show (cf. Sections 3.3 to 3.5). However,
there is a potential problem with theC metric as illustrated in Figure 10 on the
left. Front 2 is actually closer to the Pareto-optimal front than front 1, but both
fronts are equal regarding theC metric (the coverage is 50% in each case). Dur-
ing the final stages of this work, another measure has been developed in order
to overcome this problem. It is presented here; however, it was not used for the
performance comparisons in Sections 3.3 to 3.5.

Def. 10: (Coverage difference of two sets)Let AAA, BBB ⊆ XXX be two sets of decision vec-
tors. The functionD is defined by

D(AAA, BBB) := S(AAA + BBB) − S(BBB) (3.2)

and gives the size of the space weakly dominated by AAA but not weakly dominated
by BBB (regarding the objective space).

To illustrate this definition consider Figure 10 on the right and assume thatAAA is
related to front 1 andBBB to front 2. On the one hand, there is the area of sizeα

that is covered by front 1 but not by front 2; on the other hand there is an area
of sizeβ that is covered by front 2 but not by front 1. The dark-shaded area (of
sizeγ ) is covered by both fronts in common. It holds thatD(AAA, BBB) = α and

( f1(xxxi ), f2(xxxi ), . . . , fk(xxxi )) and( f max
1 , f max

2 , . . . , f max
k ) when the objectives are to be mini-

mized (f max
i represents the maximum value of objectivefi ). Mixed maximization/minimization

problems are treated analogously.
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D(BBB, AAA) = β since

α + β + γ = S(AAA + BBB) (3.3)

α + γ = S(AAA) (3.4)

β + γ = S(BBB). (3.5)

In this example,D(BBB, AAA) > D(AAA, BBB) which reflects the quality difference
between the two fronts in contrast to theC metric. In addition, theD measure
gives information about whether either set entirely dominates the other set, e.g.,
D(AAA, BBB) = 0 andD(BBB, AAA) > 0 means thatAAA is dominated byBBB.

Ideally, theD metric is used in combination with theS metric where the val-
ues may be normalized by a reference volumeV . For a maximization problem,
the value

V =
k∏

i=1

( f max
i − f min

i )

is suggested here, wheref max
i and f min

i is the maximum respectively minimum
value objectivefi can take. However, other values, e.g.,V = S(XXX p) as pro-
posed by Veldhuizen (1999), may be used as well. In consequence, four values
are considered when comparing two setsAAA, BBB ∈ XXX f :

S(AAA)/V, which gives the relative size of the region in objective space that is
weakly dominated byAAA,

S(BBB)/V, which gives the relative size of the region in objective space that is
weakly dominated byBBB,

D(AAA, BBB)/V, which gives the relative size of the region in objective space that
is weakly dominated byAAA andnot by BBB, and

D(BBB, AAA)/V, which gives the relative size of the region in objective space that
is weakly dominated byBBB andnot by AAA.

As theD measure is defined on the basis of theS measure, no additional im-
plementation effort is necessary.

3.1.3 Scaling-Dependent Measures

The following set of metrics is an alternative to theS, C andD measures by
which each of the three criteria (distance, distribution, spread) can be assessed
separately. Although this allows a more accurate performance comparison, the
measures below are scaling-dependent as they rely on a distance metric.

Def. 11: Given a nondominated set AAA ⊆ XXX, a neighborhood parameterσ > 0 (to be
chosen appropriately), and a distance metric‖ · ‖. Three functions are intro-
duced to assess the quality of AAA regarding the decision space:
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1. The functionM1 gives the average distance to the Pareto-optimal set XXX p:

M1(AAA) := 1

|AAA|
∑
aaa∈AAA

min{‖aaa − xxx‖ | xxx ∈ XXX p} (3.6)

2. The functionM2 takes the distribution in combination with the number of non-
dominated solutions found into account:

M2(AAA) := 1

|AAA − 1|
∑
aaa∈AAA

|{bbb ∈ AAA | ‖aaa − bbb‖ > σ }| (3.7)

3. The functionM3 considers the spread of the set AAA:

M3(AAA) :=
√√√√ n∑

i=1

max{‖ai − bi ‖ | aaa, bbb ∈ AAA} (3.8)

Analogously, three metricsM∗
1, M∗

2, andM∗
3 are defined on the objective space,

whereσ ∗ > 0 is given as before and UUU = fff (AAA) ⊆ YYY:

M∗
1(UUU ) := 1

|UUU |
∑
uuu∈UUU

min{‖uuu − yyy‖ | yyy ∈ YYY p} (3.9)

M∗
2(UUU ) := 1

|UUU | − 1

∑
uuu∈UUU

|{vvv ∈ UUU | ‖uuu − vvv‖ > σ ∗}| (3.10)

M∗
3(UUU ) :=

√√√√ k∑
i=1

max{‖ui − vi ‖ | uuu, vvv ∈ UUU } (3.11)

WhileM1 andM∗
1 are intuitive,M2 andM3 (respectivelyM∗

2 andM∗
3) need

further explanation. The distribution metrics give a value within the interval
[0, |AAA|] ([0, |UUU |]) which reflects the number ofσ -niches (σ ∗-niches) inAAA (UUU ).
Obviously, the higher the value the better the distribution for an appropriate
neighborhood parameter (e.g.,M∗

2(UUU ) = |UUU | means that for each objective
vector there is no other objective vector withinσ ∗-distance to it). The functions
M3 andM∗

3 use the maximum extent in each dimension to estimate the range
to which the nondominated set respectively front spreads out. In the case of two
objectives, this represents the distance of the two outer solutions.

3.2 Methodology
In the following general implementation aspects as well as the performing of
the experiments are described.
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3.2.1 Selection and Fitness Sharing

Actually, each MOEA should be combined with the selection scheme originally
applied. But the influence of the selection scheme on the outcome of an EA can-
not be neglected, e.g., fitness proportionate selection, which is used in VEGA,
is well known to have serious disadvantages (Blickle and Thiele 1996). In order
to guarantee a fair comparison, all MOEAs except FFGA were implemented
with the same selection scheme: binary tournament selection with replacement.
In FFGA, the originally proposed stochastic universal sampling was employed,
because fitness assignment is closely related to this particular selection algo-
rithm.

Unfortunately, a conventional combination of fitness sharing and tourna-
ment selection may lead to chaotic behavior of the EA (Oei, Goldberg, and
Chang 1991). Therefore, both NSGA and HLGA were implemented using
a slightly modified version of sharing, calledcontinuously updated sharing,
which was proposed by the same researchers. With it, the partly filled next gen-
eration is taken to calculate the niche count rather than the current generation.
Horn and Nafpliotis (1993) introduced this concept in NPGA as well.

Furthermore, the guidelines given in (Deb and Goldberg 1989) were used
to calculate the niche radius, assuming normalized distance. Since NSGA is
the only MOEA under consideration which performs fitness sharing in decision
space, two niche radii are specified per test problem. The symbolσsharerefers to
the one used by HLGA, FFGA, and NPGA, whileσNSGA

share gives the niche radius
for NSGA.

3.2.2 Elitism

In order to investigate the influence of this concept in evolutionary multiobjec-
tive search, the elitism mechanism used in SPEA was generalized as described
in Section 2.5, and FFGA, NPGA, HLGA, VEGA, and NSGA were imple-
mented on the basis of Algorithm 10. The elitism variants of the algorithms are
marked by an asterisk in order to distinguish them from the techniques origi-
nally proposed by the corresponding authors. Note that the clustering procedure
which is invoked in Algorithm 10 requires a distance metric. In case of NSGA∗,
the distance on the decision space was taken, while the other algorithms used
the distance on the objective space.

3.2.3 Reference Algorithms

As additional points of reference, two further optimization methods were con-
sidered: random sampling and multiple independent sampling. The first algo-
rithm (RAND) randomly generates a certain number of individuals per genera-
tion, according to the rate of crossover and mutation (though neither crossover,
mutation nor selection are performed). Hence the number of fitness evaluations
was the same as for the MOEAs. The second algorithm is an elitist single-
objective EA using the weighting method. In contrast to the other algorithms
under consideration, 100 independent runs were performed per test problem,
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each run optimizing towards another randomly chosen linear combination of
the objectives. The nondominated solutions among all solutions generated in
the 100 runs formed the trade-off front achieved on a particular test problem.
Furthermore, three versions of the single-objective EA were used: one with 100
generations per linear combination (SO-1), one with 250 generations (SO-2),
and another one that terminated after 500 generations in every single optimiza-
tion run (SO-5). The other parameters (population size, crossover probability,
mutation rate) were the same as for the MOEAs per test problem.

3.2.4 Performance Assessment

In case of the MOEAs as well as RAND, altogether 30 independent optimiza-
tion runs were considered per test problem, where the population was mon-
itored for nondominated solutions and the resulting nondominated setAAA =
p(mmm(∪T

t=0PPPt)) was taken as the outcome of one simulation run (offline per-
formance). For each algorithm there was a sample of 30S values respectively
for each ordered pair of algorithms there were 30C values per test problem ac-
cording to the 30 runs performed. Note that eachC value was computed on the
basis of the nondominated sets achieved by two algorithms with the same initial
population.

Moreover,box plots(Chambers, Cleveland, Kleiner, and Tukey 1983) are
used to visualize the distribution of these samples. A box plot consists of a box
summarizing 50% of the data. The upper and lower ends of the box are the
upper and lower quartiles, while a thick line within the box encodes the median.
Dashed appendages summarize the spread and shape of the distribution, and
dots represent outside values.

3.3 Multiobjective Knapsack Problem

3.3.1 Problem Statement

Generally, a 0/1 knapsack problem consists of a set of items, weight and profit
associated with each item, and an upper bound for the capacity of the knapsack.
The task is to find a subset of items which maximizes the total of the profits in
the subset, yet all selected items fit into the knapsack, i.e., the total weight does
not exceed the given capacity (Martello and Toth 1990).

This SOP can be extended directly to an MOP by allowing an arbitrary num-
ber of knapsacks. Formally, the multiobjective 0/1 knapsack problem consid-
ered here is defined in the following way: Given a set ofn items and a set ofk
knapsacks, with

pi, j = profit of item j according to knapsacki,
wi, j = weight of item j according to knapsacki,

ci = capacity of knapsacki,
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find a vectorxxx = (x1, x2, . . . , xn) ∈ {0, 1}n, such that the capacity constraints

ei (xxx) =
n∑

j =1

wi, j · xj ≤ ci (1 ≤ i ≤ k) (3.12)

are satisfied and for whichfff (xxx) = ( f1(xxx), f2(xxx), . . . , fk(xxx)) is maximum,
where

fi (xxx) =
n∑

j =1

pi, j · xj (3.13)

andxj = 1 if and only if item j is selected.

3.3.2 Test Data

In order to obtain reliable and sound results, nine different test problems were
investigated where both the number of knapsacks and the number of items were
varied. Two, three, and four objectives were taken under consideration, in com-
bination with 250, 500, and 750 items.

Following suggestions in (Martello and Toth 1990),uncorrelatedprofits and
weights were used, wherepi, j andwi, j were random integers in the interval
[10, 100]. The knapsack capacities were set to half the total weight regarding
the corresponding knapsack:

ci = 0.5
m∑

j =1

wi, j (3.14)

As reported in (Martello and Toth 1990), about half of the items are expected to
be in the optimal solution (of the SOP) when this type of knapsack capacity is
chosen. Also more restrictive capacities (ci = 200) were examined where the
solutions contain only a few items.

3.3.3 Constraint Handling

Concerning the representation of individuals as well as the constraint handling,
this work drew upon results published by Michalewicz and Arabas (1994), who
examined EAs with different representation mappings and constraint handling
techniques on the (single-objective) 0/1 knapsack problem. Concluding from
their experiments, penalty functions achieve best results on data sets with ca-
pacities of half the total weight; however, they fail on problems with more
restrictive capacities. Since both kinds of knapsack capacities were to be in-
vestigated, a greedy repair method was implemented that produced the best out-
comes among all algorithms under consideration when both capacity types were
regarded.

In particular, an individualiii ∈ {0, 1}n encodes a solutionxxx ∈ {0, 1}n. Since
many codings lead to infeasible solutions, the mapping functionmmm(iii ) realizes
a simple repair method that decodes an individualiii according to the following
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scheme: First, setxxx = iii ; then remove step by step items fromxxx as long as any
capacity constraints is violated. The order in which the items are deleted is de-
termined by the maximum profit/weight ratio per item; for itemj the maximum
profit/weight ratioqj is given by the equation2

qj = maxni=1

{
pi, j

wi, j

}
(3.15)

The items are considered in increasing order of theqj , i.e., those achieving the
lowest profit per weight unit are removed first. This mechanism intends to fulfill
the capacity constraints while diminishing the overall profit as little as possible.

3.3.4 Parameter Settings

Independent of the algorithm and the test problem,T , pc, andpm were fixed:

Number of generationsT : 500
Crossover ratepc (one-point) : 0.8
Mutation ratepm (per bit) : 0.01

Following Srinivas and Deb (1994), the crossover probability was set to a rather
high value; the mutation rate was chosen according to Grefenstette (1986). Con-
cerningT , the same value as used in Michalewicz and Arabas (1994) was taken.
The remaining parameters were chosen to be dependent on the test problem (see
Table 1). Concerning SPEA,N was set to 4/5 andN to 1/4 of the population
size given in Table 1, for reasons of fairness. Moreover, the domination pres-
suretdom, a parameter of NPGA, was determined experimentally. All NPGA
simulations were carried out five times, each time using another value fortdom

(5%, 10%, 15%, 20%, and 25% of the population size). At the end, the param-
eter value which achieved the best results for theS measure was chosen per test
problem (cf. Table 1).

3.3.5 Experimental Results

The following algorithms were compared: RAND, HLGA, NPGA, VEGA,
NSGA, SO-1, SO-5, and SPEA. In addition, a slightly modified version of
SPEA was examined (SP-S) wherePPP does not participate in the selection phase;
there, the population size was the same as for the other EAs, and the size of the
external nondominated set was restricted to 1/4 · N.

The results concerning theS measure (size of the dominated space) are
shown in Figure 11, the direct comparison of the different algorithms based
on theC measure (coverage) is depicted in Figure 13. In Figure 12 the trade-off
fronts obtained by the EAs in 5 runs are plotted for the two-dimensional prob-
lems. As the relative performance of the MOEAs was similar with both kinds
of knapsack capacities, only the results concerning the more relaxed capacity
type (half the total weight) are presented in the following.

2This is a straight-forward extension to the single-objective approach by Michalewicz and
Arabas (1994) whereqj = p1, j /w1, j .
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Tab. 1: Parameters for the knapsack problem that were adjusted to the problem complexity.

knapsacks parameter items
250 500 750

N 150 200 250

2
σshare 0.4924 0.4943 0.4954

σNSGA
share 115 236 357

tdom 7 10 12

N 200 250 300

3
σshare 0.4933 0.4946 0.4962

σNSGA
share 113 233 354

tdom 30 25 15

N 250 300 350

4
σshare 0.4940 0.4950 0.4967

σNSGA
share 112 232 352

tdom 50 75 35

Generally, the simulation results prove that all MOEAs do better than the
random search strategy. Figure 13 shows that the trade-off fronts achieved by
RAND are entirely dominated by the fronts evolved by the other algorithms
(with regard to the same population). Concerning theS distributions, the RAND
median is less by more than 20 quartile deviations than the medians associated
with the EAs when the maximum quartile deviation of all samples is considered.

Among the non-elitist MOEAs, NSGA seems to provide the best perfor-
mance. The median of theS values is for each test problem greater than the
corresponding medians of the other three non-elitist MOEAs by more than 5
quartile deviations. In addition, on eight of the nine test problems NSGA weakly
dominates more than 70% of the fronts computed by HLGA, NPGA, and VEGA
in more than 75% of the runs; in 99% of the runs NSGA weakly dominates more
than 50%. In contrast, those three MOEAs weakly dominate less than 10% of
the NSGA outcomes in 75% of all runs and less than 25% in 99% of the runs (on
eight of the nine problems). For 4 knapsacks and 250 items, the coverage rates
scatter more, however, NSGA achieves higherC values in comparison with the
other non-elitist MOEAs.

Comparing NPGA and VEGA, there is no clear evidence that one algorithm
outperforms the other, although VEGA seems to be slightly superior to NPGA.
Only on two of the test problems (2 knapsack, 500 and 750 items) do the me-
dians of theS distributions of the two EAs deviate by more than 3 quartile de-
viations (in favor of VEGA). In the direct comparison based on theC measure,
VEGA weakly dominates more than 50% of the NPGA outcomes on average,
while NPGA achieves less than 25% coverage regarding VEGA on average.
Furthermore, both algorithms generate better assessments in comparison with
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Fig. 11: Distribution of theS values. RAND is not considered here in order not to blur the
differences between the MOEAs.

HLGA. With 3 and 4 knapsacks, the fronts produced by HLGA are dominated
by the NPGA and VEGA fronts by 99% (cf. Figure 13), and the medians of the
S values associated with HLGA are more than 10 quartile deviations less than
theS medians related to NPGA and VEGA. For 2 knapsacks, theS distribu-
tions are closer together; however, theC measure indicates clear advantages of
NPGA and VEGA over HLGA.

Moreover, SPEA achieves the best assessments among the MOEAs. It
weakly dominates all of the nondominated solutions found by HLGA, NPGA,
VEGA, and NSGA with eight of the nine test problems; for 4 knapsacks and 250
items at least 87% are weakly dominated. Vice versa, those algorithms weakly
dominate less than 5% of the SPEA outcomes in all 270 runs. Concerning the
size of the dominated space, the medians of theS distributions related to SPEA
are greater than the corresponding medians of the other MOEAs by more than
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Fig. 12: Trade-off fronts for two knapsacks regarding the first 5 runs. For better visualization,
the points of a front are connected by dashed lines and RAND is not considered here.

10 quartile deviations. These results indicate that elitism is important for the ef-
fectiveness of the search, as SP-S also performs substantially worse than SPEA.
Nevertheless, SP-S appears to do slightly better than NSGA on the three- and
four-dimensional problems. Both theS values (the median distance to NSGA is
greater than 3 quartile deviations) and theC values suggest a slight advantage
for SP-S over NSGA. For 2 knapsacks, the results are ambiguous and do not
allow a final conclusion to be made.

Finally, the fact that SO-5 weakly dominates on average more than 90% of
the nondominated solutions computed by HLGA, NPGA, VEGA, and NSGA
and achieves significantly greaterS values (the median is greater by more than
21 quartile deviations than the other medians per test problem) suggests that
none of the non-elitist MOEAs converges to the Pareto-optimal front using the
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Fig. 13: Box plots based on theC measure. Each rectangle contains nine box plots representing
the distribution of theC values for a certain ordered pair of algorithms; the three box
plots to the left relate to 2 knapsacks and (from left to right) 250, 500, and 750 items;
correspondingly the three middle box plots relate to 3 knapsacks and the three to the
right to 4 knapsacks. The scale is 0 at the bottom and 1 at the top per rectangle. Fur-
thermore, each rectangle refers to algorithmA associated with the corresponding row
and algorithmB associated with the corresponding column and gives the fraction ofB
weakly dominated byA (C(A, B)).
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chosen parameter settings. This can also be observed in Figure 12. However, as
this figure also indicates, SPEA can find solutions that are closer to the Pareto-
optimal front than those produced by SO-5 in spite of less computation effort.
This observation is supported by the fact that SO-5 weakly dominates only 48%
of the SPEA front with eight of the nine test problems (SO-1 less than 12%).
Taking into account that the outcome of each SPEA run is compared to a front
produced in 100 SO-1 (SO-5) runs, it becomes obvious that (elitist) MOEAs
have clear advantages over multiple single-objective searches. In the case of
SO-1, SPEA had 20 times less computation effort; in the case of SO-5, the
computation effort was even 100 times less.

3.4 Multiobjective Traveling Salesman Problem

3.4.1 Problem Statement

The general traveling salesman problem (Garey and Johnson 1979) is defined
by a numberl of cities and al ×l matrixC = (ci, j ) which gives for each ordered
pair (i, j ) of cities the nonnegative distanceci, j to be covered to get from cityi
to city j . The optimization goal is to find the shortest route for which each city
is entered and left exactly once.

By adding an arbitrary number of distance matrices, this SOP can be trans-
formed to an MOP. Formally, givenl cities and a set{C1, C2, . . . , Ck} of l × l
matrices withCh = (ch

i, j ), minimize fff (π) = ( f1(π), f2(π), . . . , fk(π)) with

fi (π) =

 l−1∑

j =1

ci
π( j ),π( j +1)


+ ci

π(l ),π(1)

and whereπ is a permutation over the set{1, . . . , l }.3

3.4.2 Test Data

Altogether, three problem instances were considered with 100, 250, and 500
cities, each having two objectives. The distance matrices were generated at
random, where eachch

i, j was assigned a random number in the interval [1, 100].

3.4.3 Parameter Settings

The experiments were carried out using the following parameter settings:

3Independently of this work, Veldhuizen and Lamont (1998a) have presented a slightly dif-
ferent formulation of a two-dimensional multiobjective traveling salesman problem.
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Fig. 14: Trade-off fronts for the traveling salesman problem regarding the first 5 runs. The
points of one front are connected by dashed lines, and the black dots represent the 5
initial populations.

Number of generationsT : 500
Population sizeN : equal tol (number of cities)
Crossover ratepc : 0.8
Mutation ratepm (per individual) : 0.1
Niche radiusσshare : 0.4886

As with the other test problems, the elitist MOEAs (SPEA and FFGA∗) ran with
a population size of 4/5 · N and an external set size of 1/4 · N.

Concerning the encoding, an individual is a vector ofl numbers where each
integer from 1 tol appears exactly once. When creating the initial population
PPP0, it is assured that only permutations are generated. During the recombi-
nation and mutation phases, special order-based genetic operators ensure that
the permutation property of individuals is not destroyed. The operators used
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SPEA

FFGA*

FFGA

Fig. 15: Box plots based on theC measure. Each rectangle contains three box plots representing
the distribution of theC values for a certain ordered pair of algorithms; the box plot to
the left relates to 100 cities, the one in the middle to 250 cities, and the right box plot to
500 cities. The scale is 0 at the bottom and 1 at the top per rectangle. Furthermore, each
rectangle refers to algorithmA associated with the corresponding row and algorithmB
associated with the corresponding column and gives the fraction ofB weakly dominated
by A (C(A, B)).

here are uniform order-based crossover and swap mutation (the values of two
arbitrary positions within the vector are swapped) (Davis 1991).

3.4.4 Experimental Results

With the traveling salesman problem, three MOEAs were investigated: FFGA,
FFGA∗, and SPEA. A clear hierarchy of algorithms emerged, as can be seen in
Figures 14 and 15. The fronts achieved by SPEA completely dominate the fronts
produced by the other two MOEAs more than 96% of the time, and FFGA∗
clearly outperforms FFGA. It seems a likely supposition that elitism is impor-
tant here, although fitness assignment plays a major role as well since there is
also a performance gap between the two elitist MOEAs.

3.5 Continuous Test Problems

3.5.1 Test Functions for Different Problem Features

Deb (1998) has identified several features which may cause difficulties for an
MOEA in i) converging to the Pareto-optimal front and ii) maintaining diver-
sity within the population. Concerning the first issue, multimodality, deception,
and isolated optima are well-known problem areas in single-objective evolu-
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tionary optimization. The second issue is important in order to achieve a well
distributed nondominated front. However, certain characteristics of the Pareto-
optimal front may prevent an MOEA from finding diverse Pareto-optimal solu-
tions: convexity or non-convexity, discreteness, and non-uniformity. For each of
the six problem features mentioned a corresponding test function is constructed
following the guidelines in (Deb 1998). This investigation is restricted to only
two objectives, in order to investigate the simplest case first. In the author’s
opinion, two-dimensional problems already reflect essential aspects of MOPs.

Each of the test functions defined below is structured in the same manner
and consists itself of three functionsf1, g, h (Deb 1998, p.15):

Minimize ttt(xxx) = ( f1(x1), f2(xxx))

subject to f2(xxx) = g(x2, . . . , xn) · h( f1(x1), g(x2, . . . , xn))

where xxx = (x1, . . . , xn)

(3.16)

The function f1 is a function of the first decision variable only,g is a function
of the remainingn − 1 variables, andh takes the function values off1 andg.
The test functions differ in these three functions as well as in the number of
variablesn and in the values the variables may take.

Def. 12: Six test functions ttt1, . . . , ttt6 are defined following the scheme given in Equa-
tion 3.16:

• The test function ttt1 has a convex Pareto-optimal front:

f1(x1) = x1

g(x2, . . . , xn) = 1 + 9 · (
∑n

i=2 xi )/(n − 1)

h( f1, g) = 1 − √
f1/g

(3.17)

where n= 30and xi ∈ [0, 1]. The Pareto-optimal front is formed with g= 1.

• The test function ttt2 is the non-convex counterpart to ttt1:

f1(x1) = x1

g(x2, . . . , xn) = 1 + 9 · (
∑n

i=2 xi )/(n − 1)

h( f1, g) = 1 − ( f1/g)2
(3.18)

where n= 30and xi ∈ [0, 1]. The Pareto-optimal front is formed with g= 1.

• The test function ttt3 represents the discreteness features: its Pareto-optimal front
consists of several non-contiguous convex parts:

f1(x1) = x1

g(x2, . . . , xn) = 1 + 9 · (
∑n

i=2 xi )/(n − 1)

h( f1, g) = 1 − √
f1/g − ( f1/g) sin(10π f1)

(3.19)

where n= 30 and xi ∈ [0, 1]. The Pareto-optimal front is formed with g= 1.
The introduction of the sine function in h causes discontinuity in the Pareto-
optimal front. However, there is no discontinuity in the objective space.
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• The test function ttt4 contains219 local Pareto-optimal sets and therefore tests
for the EA’s ability to deal with multimodality:

f1(x1) = x1

g(x2, . . . , xn) = 1 + 10(n − 1) +∑n
i=2(x

2
i − 10 cos(4πxi ))

h( f1, g) = 1 − √
f1/g

(3.20)

where n= 10, x1 ∈ [0, 1] and x2, . . . , xn ∈ [−5, 5]. The global Pareto-optimal
front is formed with g= 1 , the best local Pareto-optimal front with g= 1.25.
Note that not all local Pareto-optimal sets are distinguishable in the objective
space.

• The test function ttt5 describes a deceptive problem and distinguishes itself from
the other test functions in that xi represents a binary string:

f1(x1) = 1 + u(x1)

g(x2, . . . , xn) = ∑n
i=2 v(u(xi ))

h( f1, g) = 1/ f1
(3.21)

where u(xi ) gives the number of ones in the bit vector xi (unitation),

v(u(xi )) =
{

2 + u(xi ) if u(xi ) < 5
1 if u(xi ) = 5

}
.

and n = 11, x1 ∈ {0, 1}30 and x2, . . . , xn ∈ {0, 1}5. The true Pareto-optimal
front is formed with g= 10, while the best deceptive Pareto-optimal set includes
all solutions xxx for which g(x2, . . . , xn) = 11. The global Pareto-optimal front
as well as the local ones are convex.

• The test function ttt6 includes two difficulties caused by the non-uniformity of
the objective space: Firstly, the Pareto-optimal solutions are non-uniformly
distributed along the global Pareto front (the front is biased for solutions for
which f1(x1) is near one); secondly, the density of the solutions is least near
the Pareto-optimal front and highest away from the front:

f1(x1) = 1 − exp(−4x1) sin6(6πx1)

g(x2, . . . , xn) = 1 + 9 · ((∑n
i=2 xi )/(n − 1)

)0.25

h( f1, g) = 1 − ( f1/g)2
(3.22)

where n= 10, xi ∈ [0, 1]. The Pareto-optimal front is formed with g= 1 and
is non-convex.

Each function will be discussed in more detail in Section 3.5.3, where the
corresponding Pareto-optimal fronts are visualized as well.
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3.5.2 Parameter Settings

Independent of the algorithm and the test function, each simulation run was
carried out using the following parameters:

Number of generationsT : 250
Population sizeN : 100
Crossover ratepc (one-point) : 0.8
Mutation ratepm (per bit) : 0.01
Niche radiusσshareandσNSGA

share : 0.4886
Domination pressuretdom : 10

Since NSGA uses fitness sharing in individual space onttt5, a different value
σNSGA

share = 34 was chosen for this particular case. Concerning NPGA, the recom-
mended value fortdom = 10% of the population size was taken (Horn and Naf-
pliotis 1993). Furthermore, SPEA as well as the elitist variants of the MOEAs
ran with a population size of 80 where the external nondominated set was re-
stricted to 20.

Regarding the encoding of the decision vector, an individual is a bit vector
where each parameterxi is represented by 30 bits; the parametersx2, . . . , xm

only comprise 5 bits for the deceptive functionttt5.

3.5.3 Experimental Results

In Figures 16 to 21, the nondominated sets achieved by RAND, FFGA, NPGA,
HLGA, VEGA, NSGA, SO-2, and SPEA are visualized in the objective space.
Per algorithm and test function, the outcomes of the first five runs were unified,
and then the dominated solutions were removed from the union set; the remain-
ing points are plotted in the figures. Also shown are the Pareto-optimal fronts
(lower curves) as well as additional reference curves (upper curves). The latter
curves allow a more precise evaluation of the obtained trade-off fronts and were
calculated by adding 0.1 · | max{ f2(xxx)} − min{ f2(xxx)}| to the f2 values of the
Pareto-optimal points. However, the curve resulting for the deceptive function
ttt5 is not appropriate here, since it lies above the fronts produced by the random
search algorithm. Instead, all solutionsxxx with g(x2, . . . , xn) = 2·10 are consid-
ered, i.e., for which the parameters are set to the deceptive attractors. In addition
to the graphical presentation, the different algorithms were assessed in pairs us-
ing theC metric which is shown in Figure 22. There, the shortcut REFS stands
for reference set and represents for each test function a set of 100 equidistant
points which are uniformly distributed on the corresponding reference curve.

As with the knapsack problem, all MOEAs do better than RAND. However,
the box plots reveal that HLGA, NPGA, and FFGA do not always dominate the
randomly created trade-off front completely. Furthermore, it can be observed
that NSGA clearly outperforms the other non-elitist MOEAs regarding both dis-
tance to the Pareto-optimal front and distribution of the nondominated solutions.
This confirms the results presented in Section 3.3. Furthermore, it is remark-
able that VEGA performs well compared to NPGA and FFGA, although some
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Fig. 16: Test functionttt1 (convex).
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Fig. 17: Test functionttt2 (non-convex).
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Fig. 18: Test functionttt3 (discrete).
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Fig. 19: Test functionttt4 (multimodal).



3.5. Continuous Test Problems 63

0 5 10 15 20 25 30
f1

0

2

4

6

f2

RAND

FFGA

NPGA

HLGA

VEGA

NSGA

SO-2

SPEA

Fig. 20: Test functionttt5 (deceptive).
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Fig. 21: Test functionttt6 (non-uniform).
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Fig. 22: Box plots based on theC metric. Each rectangle contains six box plots representing
the distribution of theC values for a certain ordered pair of algorithms; the leftmost
box plot relates tottt1, the rightmost tottt6. The scale is 0 at the bottom and 1 at the
top per rectangle. Furthermore, each rectangle refers to algorithmA associated with
the corresponding row and algorithmB associated with the corresponding column and
gives the fraction ofB weakly dominated byA (C(A, B)).
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serious drawbacks of this approach are known (Fonseca and Fleming 1995b).
The reason for this might be that here the offline performance is considered in
contrast to other studies which examine the online performance (Horn and Naf-
pliotis 1993; Srinivas and Deb 1994). Finally, the best performance is provided
by SPEA. Apart fromttt5, it even outperforms SO-2, in spite of substantially
lower computational effort and although SO-2 uses an elitist strategy as well.

Considering the different problem features separately, convexity seems to
cause the least amount of difficulty for the MOEAs. All algorithms evolved
reasonably distributed fronts, although there was a difference in the distance to
the Pareto-optimal set. On the non-convex test functionttt2, however, HLGA,
VEGA, and SO-2 have difficulties finding intermediate solutions, which is in
accordance with the discussion in Section 1.2.1. Pareto-based algorithms have
advantages here, but only NSGA and SPEA evolved a sufficient number of non-
dominated solutions. In the case ofttt3 (discreteness), HLGA and VEGA are
superior to both FFGA and NPGA. While the fronts achieved by the former
weakly dominate about 25% of the reference set on average, the latter come up
with 0% coverage. Among the considered test functions,ttt4 andttt5 seem to be
the hardest problems, since none of the algorithms was able to evolve a global
Pareto-optimal set. The results on the multimodal problem indicate that elitism
is helpful here; SPEA is the only algorithm which found a widely distributed
front. Remarkable is also that NSGA and VEGA outperform SO-2 onttt4. Again,
comparison with the reference set reveals that HLGA and VEGA (100% cov-
erage) surpass NPGA (50% coverage) and FFGA (0% coverage). Concerning
the deceptive function, SO-2 is best, followed by SPEA and NSGA. Among
the remaining MOEAs, VEGA appears to be preferable here, weakly dominat-
ing about 20% of the reference set, while the others weakly dominate 0% in
all runs. Finally, it can be observed that the biased search space together with
the non-uniform represented Pareto-optimal front (ttt6) makes it difficult for the
MOEAs to evolve a well-distributed nondominated set. This also affects the
distance to the global optimum, as even the fronts produced by NSGA do not
dominate any of the points in the reference set.

3.5.4 Influence of Elitism

With all test problems investigated in this work, SPEA turned out to be superior
to the other MOEAs under consideration. This observation leads to the question
of whether elitism would increase the performance of the non-elitist MOEAs.
The experiments concerning the traveling salesman problem showed this holds
for FFGA on this particular problem. For a deeper investigation of this matter,
VEGA∗, HLGA∗, FFGA∗, NPGA∗, and NSGA∗, ran on the test functions using
the same parameters as SPEA.

The results forttt1 andttt2 are shown in Figure 23 respectively 24. Obviously,
elitism is helpful on these two functions, although the visual presentation has to
be interpreted with care as only five runs are considered. For instance, NSGA∗
and SPEA seem to perform equally well here using those particular parameter
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Fig. 23: Results on test functionttt1 (convex) using elitism.
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Fig. 24: Results on test functionttt2 (non-convex) using elitism.
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Fig. 25: Box plots comparing each non-elitism algorithmA with its elitism-variantA∗.

settings. Moreover, the figures indicate that elitism can even help MOEAs to
surpass the performance of a weighted-sum single-objective EA in spite of sig-
nificantly lower computation effort. However, both test functions and the metric
used are not sufficient here to also compare the elitist variants with each other.
Testing different elitist strategies and different elitist MOEAs on more difficult
test functions is an interesting subject of future research in this field.

Nevertheless, each algorithm was compared with its elitist variant based on
theC metric. As can be seen in Figure 25, elitism appears to be an important
factor to improve evolutionary multiobjective optimization. Only in one case
(NSGA on the deceptive problem) was the performance of the elitist variant
worse than the non-elitist version. Investigation of this matter will also be an
important part of an elitism study.

3.5.5 Influence of Population Size

On two test functions (ttt4 and ttt5), none of the algorithms under consideration
was able to find a global Pareto-optimal set regarding the chosen parameters.
Therefore, several runs were performed in order to investigate the influence of
the population size as well as the maximum number of generations converging
towards the Pareto-optimal front.

In Figures 26 and 27, the outcomes of multiple NSGA runs are visualized.
On the deceptive test functionttt4, NSGA found a subset of the globally optimal
solutions using a population size of 1000. In contrast,ttt5 seems to be a diffi-
cult test problem, since even a population size of 10000 was not sufficient to
converge to the optimal trade-off front after 250 generations. This did also not
change when the maximum number of generations was increased substantially
(T = 10000). In the later case, the resulting front was (using a population size
of 500) almost identical to the one achieved by NSGA∗ running 1000 gener-
ations. However, the incorporation of elitism finally enabled NSGA to find a
global Pareto-optimal set after 10000 generations.

In summary, it can be said that the choice of the population size strongly
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influences the MOEA’s capability to converge towards the Pareto-optimal front.
Obviously, small populations do not provide enough diversity among the indi-
viduals. Increasing the population size, however, does not automatically yield
an increase in performance, as can be observed with the multimodal function.
The same holds for the number of generations to be simulated. Elitism, on the
other hand, seems to be an appropriate technique to prevent premature conver-
gence. Even after 1000 generations, better solutions, and finally Pareto-optimal
solutions, evolved withttt4.

3.6 Key Results
A systematic comparison of different MOEA implementations has been carried
out on several test problems. Major results are:

• The two quantitative performance measures used were found to be sufficient
to show the performance differences among different MOEAs. On the basis
of these measures, it was possible to provide extensive comparisons taking a
large number of optimization runs into account in contrast to most comparative
studies available. Moreover, further performance measures which allow more
accurate investigations have been proposed.

• The suggested test problems provide sufficient complexity to compare multi-
objective optimizers. With all functions, differences in performance could be
observed among the algorithms under consideration. Regarding particular prob-
lem features, multimodality and deception seem to cause the most difficulty for
evolutionary approaches. However, non-convexity is also a problem feature
which mainly weighted-sum based algorithms appear to have problems with.

• In contrast with what was suspected beforehand, a hierarchy of algorithms
emerged regarding the distance to the Pareto-optimal front in descending order
of merit:

1. SPEA

2. NSGA

3. VEGA

4. NPGA, HLGA

6. FFGA

While there is a clear performance gap between SPEA and NSGA as well as
between NSGA and the remaining algorithms, VEGA, HLGA, NPGA, and
FFGA are rather close together. However, the results indicate that VEGA might
be slightly superior to the other three MOEAs, while the situation concerning
NPGA and HLGA is ambiguous: NPGA achieves better assessments on the
knapsack problem; on the continuous test functions HLGA provides slightly
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better performance. Regarding FFGA, its rank has to be interpreted carefully,
as it has not been tested on the knapsack problem and another selection scheme
was incorporated, the influence of which must not be disregarded. Finally, ran-
dom search performed much worse than the MOEAs.

• Elitism is an important factor in evolutionary multiobjective optimization. This
statement is supported by the fact that SPEA i) clearly outperforms the other
MOEAs and ii) is the only method among the ones under consideration which
incorporates elitism as a central part of the algorithm. In addition, the perfor-
mance of the other algorithms improved significantly when SPEA’s elitist strat-
egy was included. This result agrees with the one presented by Parks and Miller
(1998), who showed for a pressurized water reactor reload design problem that
NSGA performs substantially better when using elitism.

• In the case of two objectives, SPEA was found to be superior to the weighting
method using a single-objective EA despite 100 times less computation effort
(regarding the distance to the Pareto-optimal front). This observation indicates
that elitist MOEAs can find better solutions in one simulation run than tradi-
tional approaches in several runs. With more objectives, further investigations
are necessary to draw a final conclusion, as neither algorithm could be said to
be better. But also here, SPEA found several solutions in each run that were not
generated by the single-objective EA in 100 runs.

Recently, further comparative studies based on quantitative techniques have
been published. Veldhuizen (1999) compared four MOEA implementations on
six test functions using a set of six performance metrics. Knowles and Corne
(1999a, 1999b) implemented the performance assessment method described in
(Fonseca and Fleming 1996) in order to compare NPGA, NSGA, and PAES, an
MOEA proposed by the authors. Shaw, Fonseca, and Fleming (1999) demon-
strated a statistical method for performance assessment, which is based on (Fon-
seca and Fleming 1996) as well, on the 0/1 knapsack problem presented in
Section 3.3; there, a weighted-sum MOEA is compared with a Pareto-based
MOEA. Using the same technique, four implementations of an MOEA were
tested on a batch process scheduling problem in (Shaw et al. 1999).
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Applications





4
System Synthesis

The first application is a complex problem in the domain of computer engi-
neering that is concerned with the automated synthesis of heterogeneous hard-
ware/software systems. Given a system specification, the task is to find the
Pareto-optimal set among all feasible implementations, typically with regard to
the two optimization criteria cost and performance. This so-calleddesign space
explorationallows the engineer to arrive at a final implementation which best
fits the market requirements. In addition, it can help to reduce the risk and to
shorten the time-to-market of new products.

Blickle et al. (1996, 1997, 1998) have presented an evolutionary approach
to this problem which is used here as the starting-point for an implementation
based on SPEA. Their MOEA is described in Section 4.2 after the problem
statement in Section 4.1. On the basis of a video codec example, their imple-
mentation and the SPEA implementation are compared; and the influence of a
further objective, power consumption, is investigated in the last section.

4.1 Problem Description

Blickle, Teich, and Thiele (1998) consider system-level synthesis as the prob-
lem of optimally mapping a task-level specification onto a heterogeneous hard-
ware/software architecture. This model is outlined in the following; however,
for further reaching information the reader is referred to the original publication.

4.1.1 Specification Model

The specification of a system consists of three components:
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Fig. 28: Illustration of the problem of system-level synthesis (slightly modified example
from (Blickle 1996)). On the left, a system specification is visualized consisting of
problem graph, mapping set, and architecture graph. On the right, a possible imple-
mentation is shown where allocation and binding are emphasized by thick lines.

1. A behavioral description of a hardware/software system to synthesize. The be-
havior is defined by a acyclic directed graphGP = (VP, EP), the problem
graph, where the nodesv ∈ VP stand for functional objects like algorithms,
tasks, procedures, or processes and the edgese ∈ EP represent data interdepen-
dencies of the functional objects.

2. A structural specification of the system (= a class of possible architectures)
given by a directed graphGA = (VA, EA), thearchitecture graph. Structural
objects are general- or special- purpose processors, ASICs, buses, and memo-
ries, which are represented by the nodesv ∈ VA. The edgese ∈ EA model
connections between them.

3. A set M ⊆ VP × VA which specifies the space of possible mappings. When
(a, b) ∈ M, the taska ∈ VP can be mapped to, i.e., executed on, the resource
b ∈ VA, otherwise not. Note that for eacha ∈ VP there has to be at least one
pair (a, ·) ∈ M.

An example for a system specification is depicted in Figure 28 on the left.
The problem graph consists of seven functional objects where shaded nodes
stand for communication operations. The architecture graph includes a RISC
processor, a digital signal processor (DSP), and an application-specific inte-
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grated circuit (ASIC) which are interconnected by two buses. The mapping
setM is represented by the dashed arrows from the functional to the structural
objects and contains 17 pairs(a, b) ∈ VP × VA. For instance, task 7 can be
mapped to any chip, while task 1 has to be executed on the RISC processor.

4.1.2 Implementation Model

Given a system specification, an implementation, i.e., a mapping of this specifi-
cation onto a hardware/software architecture, is described by a triple(A, B, S):

1. Anallocation A⊆ VA which is a set of the selected structural objects;A defines
the architecture.

2. A binding B⊆ M which binds each taska ∈ VP to a resourceb ∈ VA; B maps
the problem graph onto the architecture.

3. A schedule S∈ S∗ which assigns each taskv ∈ VP a nonnegative integerS(v);
S(v) is the start time of the execution ofv. The set of all possible schedules is
denoted asS∗.

Thus, the decision spaceXXX is defined asXXX = 2(VA∪EA) × 2M × S∗, where
2Z denotes the power set of a setZ. The feasible setXXX f ⊆ XXX is usually
substantially smaller thanXXX and contains all implementations(A, B, S) that
satisfy the following criteria:

• The task setVP is unambiguously mapped onto the allocated resources, i.e.,
|B| = |VP|, {a | (a, ·) ∈ B} = VP and{b | (·, b) ∈ B} = A.

• Each communication can be handled, i.e., two communicating tasksa, a′ ∈ VP

with (a, a′) ∈ EP and (a, b), (a′, b′) ∈ B are either mapped onto the same
resource (b = b′) or there is a directed connection(b, b′) ∈ EA between the
corresponding resourcesb andb′.

• The schedule is deadlock free, i.e., for each taska ∈ VP all predecessorsa′ ∈
VP with (a′, a) ∈ EP have finished beforea starts:S(a′)+ R(a′) ≤ S(a) where
R(a′) denotes the (implementation dependent) run-time of taska′.

• At any point in time, at most one task is executed on each resource, i.e., all
tasksa, a′ ∈ VP with (a, b), (a′, b) ∈ B have non-overlapping execution times:
S(a′) + R(a′) ≤ S(a) ∨ S(a) + R(a) ≤ S(a′).

On the right-hand side of Figure 28, a sample implementation is shown for
the specification discussed above. All computing resources except BUS 2 are
selected, thus all communications are handled by BUS 1 (this is also reflected
by the binding that maps the communication nodes 2, 4, and 6 to Bus 1). An
infeasible implementation would emerge if task 2 would be mapped to the RISC
processor; then the communication between tasks 2 and 3 could not be realized.
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4.1.3 Optimization Task

Basically, the specification and the implementation models are independent of
the optimization criteria. Thus, various metrics can be defined: cost, perfor-
mance, power dissipation, capacity usage, etc. Blickle, Teich, and Thiele (1998)
consider the two objectives cost and latency using the following model:

• With each structural objectv ∈ VA a fixed costC(v) is associated that arises
when the particular resource is realized. The cost of an implementation is equal
to the total cost of the allocated resources.

• A latency functionL gives the estimated timeL(a, b) that is necessary to exe-
cute taska ∈ VP on resourceb ∈ VA, i.e., R(a) = L(a, b). The latency of an
implementation is defined as the earliest point in time by which all tasks have
been executed.

The resulting MOP can be formulated as

minimize fff (A, B, S) = ( f1(A, B, S), f2(A, B, S))

subject to f1(A, B, S) = ∑
v∈VA

C(v)

f2(A, B, S) = max{S(a) + L(a, b) | (a, b) ∈ B}
where (A, B, S) ∈ XXX f

(4.1)

The first objectivef1 reflects the total cost, whilef2 gives the latency of the
implementation.

4.2 Implementation
In (Blickle, Teich, and Thiele 1998) a hybrid approach to the problem of system-
level synthesis is proposed. An EA is used to determine the allocation and the
binding, because the search space for these two subproblems is large and dis-
crete and in addition the determination of a feasible binding is NP-complete
(Blickle 1996). In contrast, scheduling is a well-known problem which has been
extensively studied and for which good heuristics are available. Hence, this sub-
problem is solved by means of a deterministic method on the basis of allocation
and binding. This makes the complexity of the search space manageable.

The overall algorithm is fully detailed in Section 4.2.2. Preceding this dis-
cussion, the coding and decoding of hardware/software implementations as well
as the genetic operators used are described.

4.2.1 Representation and Genetic Operators

Each individual encodes both allocation and binding, whereas the schedule is
computed deterministically by a heuristic list-scheduling algorithm incorporat-
ing software pipelining. An allocation is represented by a bit vector of length
|VA| which defines for each structural object whether it is selected or not. In
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Fig. 29: Illustration of the individual space to decision space mapping. Each individual con-
sists of two parts, an allocation vector and a set of binding lists. In the first step of
the decoding process, a repaired allocation is computed on the basis of the allocation
vector. Afterwards, the binding lists as well as the repaired allocation are used in order
to determine the binding. As not all allocated resources may be assigned a task, the
allocation is updated in the next step. Finally, a list-scheduling heuristic calculates a
schedule corresponding to the binding. Note that in Step 2 a feasible binding is not
necessarily found.

order to reduce the number of infeasible solutions, allocations are partially re-
paired by a heuristic whenever an individual is decoded. For the same reason,
bindings are not encoded directly by a bit vector but rather indirectly using sev-
eral lists: the first list, which represents a permutation of all functional objects
in the problem graph, determines the order in which the tasks are mapped to
the computing resources with respect to the repaired allocation. Further lists,
permutations of the set of resources, define separately for each task which re-
source is to be checked next for mapping. Based on the decoded binding, the
list scheduler computes the final schedule. The relation between individuals and
implementations as well as the decoding algorithm are depicted in Figure 29.

Since allocation and binding are represented differently, they have to be
treated separately in the recombination and mutation phases. Concerning the al-
location, uniform crossover (Syswerda 1989) and bit-flip mutation were chosen.
For bindings lists, uniform order-based crossover and swap mutation (Davis
1991) ensure that the permutation property is preserved.

4.2.2 Fitness Assignment and Selection

Blickle, Teich, and Thiele (1998) used the same Pareto ranking method as Fon-
seca and Fleming (1993) (cf. Algorithm 4). For the purpose of a diverse popula-
tion, a crowding technique calledrestricted tournament selection(Harik 1995)
was incorporated. The algorithm is in the following referred to as BTTA.
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Alg. 11: (Blickle, Teich, and Thiele’s Multiobjective Evolutionary Algorithm)

Input: N (population size)
T (maximum number of generations)
pc (crossover probability)
pm (mutation rate)
w (window size for restricted tournament selection)

Output: AAA (nondominated set)

Step 1: Initialization : Set t = 0 and generate the initial population PPP0 ac-
cording to Step 1 of Algorithm 1.

Step 2: Set PPP′ = PPPt. For i = 1, . . . , N/2 do

a) Selection for reproduction: Select two individuals iii , jjj ∈ PPP′ at
random.

b) Recombination: Recombine iii and jjj ; the resulting children are
kkk and lll. With probability pc set iii ′ = iii and jjj ′ = jjj , otherwise
iii ′ = kkk and jjj ′ = lll.

c) Mutation: Mutate iii ′ and jjj ′ with mutation rate pm. The resulting
individuals are iii ′′ and jjj ′′.

d) Replacement: Call Algorithm 12 with parameters JJJ = {iii ′′, jjj ′′},
PPP′, andw. The population PPP′′ is returned. Set PPP′ = PPP′′.

Step 3: Termination: Set PPPt+1 = PPP′ and t = t +1. If t ≥ T or another stop-
ping criterion is satisfied then set AAA = p(mmm(PPPt )) else go to Step 2.

Alg. 12: (Restricted Tournament Selection)

Input: JJJ (multi-set of individuals)
PPP′ (current population)
w (window size)

Output: PPP′′ (updated population)

Step 1: Set PPP′′ = PPP′. For each jjj ∈ JJJ do

a) Select a set KKK of w individuals from PPP′′ at random.

b) Determine individual kkk ∈ KKK with minimum distance to the can-
didate jjj : ∀lll ∈ KKK : d( jjj , lll ) ≥ d( jjj , kkk).

c) If |{iii ∈ PPP′′ | iii ≺ jjj }| < |{iii ∈ PPP′′ | iii ≺ kkk}| then replace kkk by jjj :
PPP′′ = (PPP′′ − {kkk}) + { jjj }.

The distance functiond in Algorithm 12 is defined as the number of differ-
ent binding pairs:d(iii , jjj ) = |B \ B′| wheremmm(iii ) = (A, B, S) andmmm( jjj ) =
(A′, B′, S′). If (A, B, S) or (A′, B′, S′) is infeasible, thend(iii , jjj ) = 0. Further-
more, individuals representing infeasible solutions are assigned the objective
vector(∞, ∞) when checking for domination in Step 1c of Algorithm 12.
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4.3 Case Study: Video Codec

4.3.1 Comparison of Three Evolutionary Techniques

The synthesis of a video codec, based on the H.261 standard (Blickle 1996,
Chapter 9), was chosen as a sample application in order to compare the BTTA
implementation (Algorithm 11), a SPEA implementation, and an EA using the
constraint method (cf. Section 1.2.2) on the system synthesis problem. With
this application, the search space contains about 1.9 · 1027 possible bindings.

The SPEA implementation corresponds to Algorithm 7 on page 33 where
the representation, the mapping functionmmm, and the genetic operators (cf. Sec-
tion 4.2.1) as well as the objective functions (cf. Section 4.1.3) were the same
as with BTTA and the single-objective EA. All three algorithms used the pa-
rameters chosen in (Blickle 1996); there, different parameter values were inves-
tigated experimentally:

Population sizeN : 30
Number of generationsT : 100
Crossover ratepc : 0.5
Mutation ratepm (per individual) : 0.2

Regarding SPEA, the population sizeN was set to 20 and the external set size
N to 10. BTTA ran with a window size ofw = 20 (parameter for restricted
tournament selection). Furthermore, 10 independent runs were performed in the
case of BTTA and SPEA; the solutions nondominated among all the solutions
generated in the 10 runs were taken as the outcome of the two MOEAs. In
contrast, 22 different SOPs were considered in the case of the constraint EA:
11 SOPs which minimize cost under different latency constraints and 11 SOPs
which minimize latency under different cost constraints. For each SOP, the best
result out of 10 independent runs (100 generations each) was taken, and the
nondominated solutions of all 22 single-objective results constituted the final
nondominated set.

As can be seen in Table 2, SPEA weakly dominates 100% and dominates
50% of the solutions found by BTTA. Although the offline performance over
10 runs is considered here, the situation was similar when comparing distinct
runs directly. Regarding the constraint method, SPEA weakly dominates 100%
and dominates 33% of the nondominated set achieved by this algorithm. This
shows again that (elitist) MOEAs have advantages over the classical methods:
despite 22 times less computation effort, SPEA found better solutions than the
constraint EA. Moreover, Blickle (1996) reported that BTTA achieved the same
front as the constraint EA (Table 2, middle row) when the computation time
was increased (N = 100 andT = 200). The fact that independently of the
algorithm and the parameters only six nondominated solutions were generated
indicates that the Pareto-optimal set seems to be rather small (although there is
no evidence that the best front, which was found by SPEA, is the Pareto-optimal
front).
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Tab. 2: Video Codec: Nondominated fronts found by the three different methods. In each
column, the pairs marked by a surrounding box represent solutions that are dominated
by any solution produced by the two other algorithms. The outcomes of the constraint
EA are taken from (Blickle 1996, p. 203).

SPEA constraint EA BTTA

(180,166) (180,166) (180,166)
(230,114) (230,114) (230,114)
(280,78) (280,78) (280,78)
(330,48) (330,54) (330,54)
(340,36) (340,42) (350,23)
(350,22) (350,22) (370,22)

4.3.2 Trading-Off Cost, Latency, and Power Consumption

Besides cost and latency, power consumption becomes increasingly important
in the design process of hardware/software systems like, e.g., cellular phones.
In order to incorporate this criterion into the model proposed by (Blickle, Teich,
and Thiele 1998), two additional functions are introduced in the specification:

1. P(v) gives for each structural objectv ∈ VA in the architecture graph the esti-
mated power consumption in the idle state, i.e., when no task is executed.

2. P(a, b) defines for each functional objecta ∈ VP the additional power con-
sumption affected by the execution ofa on the computing resourceb ∈ VA.

Based on these two functions, a third objective, power consumption, can be
added to the problem formulation in Section 4.1.3:

f3(A, B, S) =
(∑

v∈A

P(v)

)
+

 ∑

(a,b)∈B

P(a, b)




Again, the video codec was taken as a sample application. Figure 30 depicts
the nondominated front produced in a single SPEA run (N = 100, N = 100,
T = 200) with regard to the three objectives cost, latency, and power con-
sumption. Some interesting trade-off solutions are also listed in Table 3 with
regard to three cost categories. First of all, it is remarkable that the number
of solutions in the nondominated set increases significantly by introducing a
third objective (34 in comparison with 6 in the two-dimensional case). The
same situation arose with the knapsack problem in Section 3.3. This is also
in accordance to what other researchers observed on real-world applications
(Fonseca and Fleming 1995b). Furthermore, the obtained trade-off front well
reflects the conflicts between the objectives. The cheapest solution provides the
lowest performance at maximum power dissipation (cost:f1 = 180, latency:
f2 = 166, power consumption:f3 = 299); as can be seen in Figure 31 on
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Fig. 30: Three-dimensional trade-off front for the video codec.

the top, it consists of a general-purpose RISC processor, two I/O devices, and
a slow memory module connected by a slow bus. In contrast, the fastest solu-
tion (Figure 31 on the bottom), which includes several specialized computing
resources and a fast bus, causes the maximum cost at medium power dissipa-
tion (cost: f1 = 520, latency: f2 = 22, power consumption:f3 = 218). A
good compromise solution could be the one represented by the objective vector
( f1, f2, f3) = (360, 42, 154): low power dissipation and good performance at
medium cost. It differs from the fastest solutions in that it uses a slower bus and
the subtraction/adder module instead of the faster digital signal processor, cf.
Figure 31.

The bindings and the schedules of the three implementations discussed here
are depicted in Figure 32. These illustrations show the bottlenecks of the alter-

Tab. 3: Some of the nondominated solutions found by SPEA during one optimization run. The
pairs marked by a surrounding box represent the solutions that are shown in Figures 31
and 32.

low cost medium cost high cost

(180,166,299) (300,81,128) (400,23,219)
(230,114,125) (310,78,159) (410,32,156)
(250,114,120) (330,48,244) (420,23,214)
(280,81,133) (360,42,154) (500,22,231)
(290,78,164) (390,32,161) (520,22,218)
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native solutions. For the cheapest implementation, the RISC processor essen-
tially determines the latency. The bottleneck of the fastest solution is the block
matching module, while the bus restricts the performance of the compromise
solution.



4.3. Case Study: Video Codec 83

Cost: 180 Latency: 166 Power Consumption: 299

INM

DPFM

OUTM

SBF

shared
bus

input module

output module

(slow)

programmable RISC processorRISC2single port memory module

Cost: 360 Latency: 42 Power Consumption: 154

INM

DPFM

OUTM

SBF BMM

DCTM

HC

shared
bus

input module

dual port memory module

output module

(medium)

subtraction/adder module

block matching module

module for DCT/IDCT operations

Huffman coder

SAM

Cost: 520 Latency: 22 Power Consumption: 218

INM

DPFM

OUTM

SBF

DSP

BMM

DCTM

HC

shared
bus

input module

dual port memory module

output module

(fast)

digital signal processor

block matching module

module for DCT/IDCT operations

Huffman coder

Fig. 31: Architectures of three alternative implementations.
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Cost: 180 Latency: 166 Power Consumption: 299

Cost: 360 Latency: 42 Power Consumption: 154

Cost: 520 Latency: 22 Power Consumption: 218

Fig. 32: Gantt charts of three alternative implementations; the corresponding architectures are
depicted in Figure 31. Each Gantt chart visualizes the selected computing resources
(allocationA), the mapping of functional objects to structural objects (bindingB), and
the scheduleS of a particular implementation(A, B, S). Note that the transmission
tasks, which are mapped to the I/O devices INM and OUTM as well as the memory
modules (FM, DPFM), are not shown as they are assumed to take zero time due to the
small amount of data to be transferred, cf. (Blickle 1996, p.195).
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The automatic synthesis of software implementations for programmable digital
signal processors (PDSPs) is the second application considered here. As with
the system synthesis problem, the specification is based on a graph-oriented
model where the nodes represent computations and the edges the flow of data.
Concerning the optimization criteria, three implementation metrics are crucial
with many digital signal processing (DSP) systems: program memory require-
ment, data memory requirement, and execution time.

The complexity of this problem arises not only from the number of objec-
tives involved but also from the fact that the size of the search space can be ex-
ponential in the size of the specification graph. This prevents techniques based
on enumeration from being applicable. Instead, the complexity is often reduced
by focusing on only one objective and restricting the search to a subclass of
all possible software implementations. Deterministic algorithms (heuristics or
optimization methods) are usually used to solve the resulting SOP.

Here, EAs are taken as the underlying optimization technique due to two
reasons:

• The market of DSP applications is driven by tight cost and performance con-
straints; thus, code-optimality is often critical (Marwedel and Goossens 1995).

• Frequently, DSP systems are programmed once to run forever; hence, optimiza-
tion and exploration times in the order of minutes, hours, or even days are ne-
glectable.

The motivation was to develop a methodology that can exploit increased toler-
ance for long compile time to significantly improve results produced by state of
the art algorithms. In the first step, an EA was compared with existing heuristics
on the SOP for minimizing the data memory requirement of program-memory
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optimal software implementations. As the results were promising, the EA im-
plementation was extended to perform a multiobjective optimization with regard
to the three objectives mentioned above. This was the first time the trade-offs
between these optimization criteria could be investigated for arbitrary software
implementations.

This chapter is divided into three parts. The first part (Section 5.1) comprises
a description of both the specification model and the implementation model
used. In the second part (Section 5.2), the single-objective EA for minimizing
the data memory requirement is presented and compared to several alternative
algorithms. The last part (Section 5.3) is devoted to design space exploration. In
particular, the trade-off fronts for different well-known PDSPs are analyzed for
a sample rate conversion system, and furthermore two MOEA implementations
(SPEA and NPGA) are compared on nine practical DSP applications.

5.1 Synchronous Data Flow
Synchronous data flow (SDF) is a restricted form of data flow by which an
important class of DSP algorithms can be represented (Bhattacharyya, Murthy,
and Lee 1996). With it, a DSP system is described by a directed graph where
the nodes calledactorsstand for functional components and the edges represent
interactions between them. Furthermore, for each edge it is specified how many
data values calledtokensare i ) initially on it and ii) written to and read from
it by the interconnected DSP subsystems. The SDF model is used in industrial
DSP design tools, e.g., SPW by Cadence, COSSAP (now) by Synopsys, as
well as in research-oriented environments, e.g., Ptolemy (Buck, Ha, Lee, and
Messerschmitt 1994), GRAPE (Lauwereins, Engels, Peperstraete, Steegmans,
and Ginderdeuren 1990), and COSSAP (Ritz, Pankert, and Meyr 1992).

5.1.1 Background and Notation

Def. 13: (SDF graph) An SDF graph G= (V, E) is a directed graph in which each
edge e= (v, v′) ∈ E ⊆ V × V has three attributes:

• delay(e) gives the number of initial tokens that reside on e.

• produced(e) indicates the number of tokens written to e per invocation of the
actorv.

• consumed(e) specifies the number of tokens read (and removed) from e per
invocation of the actorv′.

An example of an SDF graph is depicted in Figure 33a. It consists of two
actors and a single delay-less edge; actorA produces two tokens per invocation
while actor B consumes three. Conceptually, a queue is associated with the
edge which represents a buffer intermediately storing the tokens going fromA
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Fig. 33: Illustration of a simple SDF graph (left) and the execution of a schedule (right).

to B. A firing, i.e., invocation of actorA corresponds to adding two tokens to
the buffer. WhenB fires, the first three tokens are removed from the buffer.
Consequently,A has to be executed at least two times beforeB can fire.

If we consider a sequence of actor firings, the termscheduleis used. The
generation of a schedule is a central part of the compilation process in which a
PDSP implementation is derived from a given SDF specification.

Def. 14: (Flat Schedule)Given an SDF graph G= (V, E), a sequence S= v1v2 . . . vq

of actor instancesvi ∈ V is denoted as aflat schedule.

The concept of a flat schedule can be extended by introducing schedule loops,
which allow a more compact representation of firing sequences.

Def. 15: (Looped Schedule)Given an SDF graph G= (V, E), a parenthesized term of
the form(c S1S2 . . . Sp) is referred to as aschedule loophavingiteration count
c and iterandsS1, S2, . . . Sp; an iterand is either an actorv ∈ V or another
schedule loop. Alooped scheduleis a sequence S= T1T2 . . . Tq where each Ti
is either an actorv ∈ V or a schedule loop.

According to these definitions, each flat schedule is at the same time a looped
schedule which contains no schedule loops, i.e., the set of all flat schedules is
a subset of the set of looped schedules. For instance, the sequenceAAB ABis
a flat (and also a looped) schedule for the SDF graph depicted in Figure 33; its
execution is illustrated in the same figure on the right-hand side. In contrast, the
term A(2 AB) is a looped but not a flat schedule. Furthermore, note that each
looped schedule can be converted to a flat schedule by using loop unrolling.
The firing sequence represented by a schedule loop(c S1S2 . . . Sp) is the term
S1S2 . . . Sp . . . S1S2 . . . Sp) where the loop bodyS1S2 . . . Sp appears exactlyc
times. Transforming recursively all schedule loops contained in a looped sched-
ule into the corresponding actor firing sequences yields a flat schedule. Con-
sider, e.g., the looped schedule(2 A(2 AB)); the corresponding flat schedule is
AAB AB AAB AB.
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Moreover, looped schedules may be characterized by different properties.

Def. 16: Let G = (V, E) be an SDF graph and S a looped schedule. S is called

• admissible scheduleiff S is deadlock-free, i.e.,vi is the i th actor firing of S,
wherev1v2 . . . vi . . . vq is the flat schedule corresponding to S;

• periodic scheduleiff each actorv ∈ V fires at least once, and the state of G is
the same before and after the execution of S concerning the number of tokens
per queue;

• single-appearance scheduleiff for each actorv ∈ V there is exactly one instance
in S.

Here, S∗ denotes the set of all admissible, periodic looped schedules regarding
G. The entirety of all admissible, periodic looped single-appearance schedules
is represented by the set S∗

1 ⊆ S∗.

The actor sequenceAAB ABis an admissible, periodic flat schedule for the
example SDF graph in Figure 33, while the scheduleA(2 AB) is in S∗ as well,
but contains a schedule loop. However, the order of the actor firings is identical
for AAB ABand A(2 AB). In the remainder of this chapter, the general term
schedule is used for members ofS∗ unless it is stated differently in the context.
Examples for schedules not contained inS∗ are B AB AA, which is not admis-
sible; andAAB, which is not periodic. Furthermore,(3 A)(2 B) represents a
single-appearance schedule inS∗

1, while A(2 B) is a single-appearance schedule
which is neither admissible nor periodic.

SDF graphs for whichS∗ 6= ∅ are calledconsistentgraphs. Systematic
techniques exist to efficiently determine whether or not a given SDF graph is
consistent and to compute the minimum number of times that each actor must
be executed in the body of a scheduleS ∈ S∗ (Lee and Messerschmitt 1987).
In the following,q(v) denotes the minimum number of firings for actorv ∈ V
with regard to a given SDF graphG.

5.1.2 Implementation Model

Today’s DSP compilers still produce several hundred percent of overhead with
respect to assembly code written and optimized by hand. Therefore, a common
approach in SDF-based DSP programming environments is to maintain a library
which contains optimized assembly code for each actor. In Figure 34 the pro-
cess of generating machine code from a given schedule is visualized: First the
schedule is translated into a program containing the corresponding actor code
blocks from the library, and then additional instructions are inserted in order
to handle the data transfers between communicating actors (storage allocation
phase).

In this compilation model, which is also used here, the schedule is of cru-
cial importance. However, the generated machine code not only depends on the
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Fig. 34: SDF compilation model from (Bhattacharyya, Murthy, and Lee 1996, p.17).

order in which the actors are executed but is also influenced by the underly-
ing code generation model. Schedules can be implemented in various ways as
shown in Figure 35. On the one hand, there is a choice between inlining and
subroutine calls. Using subroutines, the final program comprises the code for
each actor only once and the schedule is realized by a sequence of subroutine
calls. In contrast, inlining means that a schedule is mapped into a sequence of
actor code blocks where each block appears in the program as many times as
the corresponding actor fires. On the other hand, looping constitutes another
degree of freedom. Most firing sequences can be represented by a flat schedule
or alternatively by a schedule containing loops. Hence, there is also a choice
between looped and flat programs, assuming that schedule loops are directly
transformed into software loops.

From the above discussion it becomes clear that a software implementation
is described by a scheduleanda code generation scheme.

Def. 17: (Software implementation) A (software) implementation for an SDF graph
G = (V, E) is a tuple(S, F) where

• S ∈ S∗ is an admissible periodic schedule, and

• the implementation function F: V → {0, 1} determines for each actorv ∈ V
separately whether it is implemented as a subroutine (F(v) = 1) or by inlining
(F(v) = 0).

Based on this definition, various objectivesfi (S, F) can be introduced. Here,
the three optimization criteria (data memory requirement, program memory re-
quirement, and execution time) are formalized.

5.1.2.1 Data Memory

The buffer capacity that is necessary to execute the schedule essentially defines
the amount of data memory required by a software implementation of an SDF
graph. In addition, the organization of the buffer memory affects the total of the
memory cells needed. The memory assigned to a buffer can be fixed or shared
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Fig. 35: Different ways of implementing a sequence of actor firings represented by the schedules
AAB AB and A(2 AB). Combinations of them are also possible as indicated on the
right-hand side.

among different queues. Furthermore, a buffer can be considered as existing the
whole time or only as long as it is used.

For simplicity, it is assumed here that a distinct segment of buffer memory is
allocated for each edge of a given SDF graph. For this unshared memory model,
the total of the data memoryD(S) needed by a scheduleS is equal to the sum
of the minimally required capacities per buffer:

D(S) =
∑
e∈E

max tokens(e, S) (5.1)

Here, maxtokens(e, S) denotes the maximum number of tokens that accumu-
late on edgee during the execution ofS.

For instance, the schedule(3 A)(2 B) requires a minimal buffer size of 6
considering the SDF graph in Figure 33a, because 6 tokens are produced when
actorA fires three times in succession. If another actor sequence is taken (S =
AAB AB), the data memory requirement can be decreased (D(S) = 4).

Finally, note that the individual actor code blocks might need additional data
memory for storing local variables. As this is a fixed amount which is the same
for all schedules and independent of whether inlining, subroutines, or looping
is used, only the pure buffer memory is considered here.

5.1.2.2 Program Memory

Assuming that for each actorv ∈ V the size size(v) of the corresponding actor
code block in the library is given, the program memory requirementP(S, F) of
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an implementation(S, F) is modeled as follows:

P(S, F) = Pinline(S, F) + Psubroutine(S, F) + Ploop(S) (5.2)

The first termPinline(S, F) only considers those actorsv which are implemented
by inlining (F(v) = 0). Let app(v) be the number of times thatv appears in the
scheduleS (this value is less than or equal to the number of firings ofv):

app(v, S) =




0 if S = v′ ∈ V ∧ v′ 6= v

1 if S = v′ ∈ V ∧ v′ = v∑q
i=1 app(v, Ti ) if S = T1T2 . . . Tq∑p
i=1 app(v, Si ) if S = (c S1S2 . . . Sp)

(5.3)

Then, the program memory requirement caused by inlining is:

Pinline(S, F) =
∑
v∈V

size(v) · app(v, S) · (1 − F(v)) (5.4)

In contrast, the usage of subroutines is accompanied by a processor-specific
overhead POsubroutinewhich takes additional code for, e.g., the jump instructions
per subroutine invocation into account:

Psubroutine(S, F) =
∑
v∈V

(size(v) + app(v, S) · POsubroutine) · F(v) (5.5)

Finally, the additive termPloop(S) denotes the program overhead caused by
schedule loops. It depends on the processor-dependent number POloop of in-
structions needed for i) loop initialization and ii) loop counter increment, loop
exit testing, and branching.Ploop(S) is equal to the number of schedule loops in
Smultiplied by POloop:

Ploop(S) =



0 if S = v ∈ V∑q
i=1 Ploop(Ti ) if S = T1T2 . . . Tq

POloop +∑p
i=1 Ploop(Si ) if S = (c S1S2 . . . Sp)

(5.6)

It must be emphasized here that this model only estimates the actual program
size. For instance, code that is added in the storage allocation phase of the
compilation process is not included in the above computations.

5.1.2.3 Execution Time

Here, the execution time denotes the overhead in clock cycles of the target PDSP
caused by i) subroutine calls, ii) software loops, and iii) data transfers in one
schedule iteration. Formally, the execution time overheadT(S, F) of a given
software implementation(S, F) is defined as

T(S, F) = Tsubroutine(S, F) + Tloop(S) + Tio(S) (5.7)
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The subroutine call overheadTsubroutine(S, F) takes the number of TOsubroutine

cycles into account that are necessary to save and restore register contents as
well as perform the call and return instructions:

Tsubroutine(S, F) =
∑
v∈V

app(v, S) · TOsubroutine· F(v) (5.8)

Concerning looping, there are in general two quantities: i) the time TOinit
loop for

initializing a loop, and ii) the time TOiteration
loop which is needed per loop iteration

in order to increment the counter, to check the exit condition, etc. For instance,
if a single loop is executedc times, it produces an overhead of TOinit

loop + c ·
TOiteration

loop cycles with this model. As schedulesS ∈ S∗ may contain nested
loops, the total loop overhead is defined recursively:

Tloop(S) =




0 if S = v ∈ V∑q
i=1 Tloop(Ti ) if S = T1T2 . . . Tq

TOinit
loop + c · (TOiteration

loop +
p∑

i=1

Tloop(Si ))

if S = (c S1S2 . . . Sp)

(5.9)

The last additive componentTio(S) represents the communication time over-
head, i.e, the time necessary to transfer data between the actors. In general,
Tio(S) is influenced by i) the processor capabilities (e.g., some PDSPs offer ef-
ficient ways to handle buffer accesses) and ii) the chosen buffer model (e.g.,
fixed versus shared buffers). Assuming that each input/output operation (read
data token from buffer, write data token to buffer) takes in average TOio cycles,
the total communication time overhead can be initially approximated by

Tio(S) = (
∑

e=(v,v′)∈E app(v, S) · produced(e) · TOio) +
(
∑

e=(v,v′)∈E app(v′, S) · consumed(e) · TOio)
(5.10)

TOio (as well as TOsubroutine, TOinit
loop, and TOiteration

loop ) depends on the chosen
processor.

As with the other two optimization criteria, certain aspects of the actual im-
plementation are disregarded in the execution time model. The amount of time
needed to execute only the actor code blocks is assumed to be fixed (and there-
fore not included inT(S, F)) due to two reasons. First, the schedule is static
(i.e., unchanged during run-time) and thus an actor firing can be performed
without interrupts and/or wait cycles for polling. Second, only actor firing se-
quences of minimal length are considered in the following, where each actorv is
executed exactlyq(v) times per schedule iteration (cf. Section 5.1.1, page 88).

5.2 Minimizing Data Memory Requirements
Most approaches to software synthesis from data flow specifications restrict the
search to a certain class of implementations in order to handle the complexity
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Fig. 36: Mapping of actor permutations to looped single-appearance schedules.

of the problem. In (Bhattacharyya, Murthy, and Lee 1996), the minimization
of data memory requirements for looped single-appearance schedules is con-
sidered under the inlining code generation model. Two heuristics have been
developed that attempt to construct a buffer memory minimal scheduleS ∈ S∗

1
for a given SDF graph. Here, an EA is applied to this SOP and compared to
those and other algorithms.1

5.2.1 Problem Statement

Formally, the SOP under consideration is

minimize f (S) = D(S)

where S ∈ XXX = S∗
1

(5.11)

whereS∗
1 is the set of all admissible, periodic single-appearance schedules for a

given SDF graphG = (V, E); note thatG is assumed to be acyclic here. Since
only inlining and looping are used as code generation schemes, the functionF
is fixed with F(v) = 0 for all v ∈ V . Therefore, a software implementation is
entirely described by the schedule.

5.2.2 Implementation

The EA uses a procedure called GDPPO (Murthy, Bhattacharyya, and Lee 1994)
on which the above two heuristics are also based. GDPPO, which stands for
generalized dynamic programming post optimization, takes a topological sort
of the actors of an SDF graphG = (V, E) as input and constructs a sched-
ule S ∈ S∗

1 whose data memory requirement is minimal among all single-
appearance schedulesS′ ∈ S∗

1 that have the same lexical ordering of actors.
Thus, the EA explores the space of possible topological sorts forG, while
GDPPO accomplishes the transformation of topological sorts to (data memory
optimal) single-appearance schedules.

1A detailed presentation of this study can be found in (Teich, Zitzler, and Bhattacharyya
1998), (Zitzler, Teich, and Bhattacharyya 1999d), and (Zitzler, Teich, and Bhattacharyya
1999b).



94 Chapter 5. Software Synthesis

Concerning the representation, an individual is a permutationπ over the set
of actors. Since each topological sort is a permutation, but not every permu-
tation is a topological sort, a repair mechanism is necessary in order to avoid
infeasible solutions. The entire decoding process is depicted in Figure 36. First,
an individualiii is unambiguously mapped to a topological sortπ ′ by the follow-
ing sort algorithm:

Alg. 13: (Special Topological Sort Algorithm)

Input: G = (V, E) (acyclic SDF graph)
π (actor permutation)

Output: π ′ (topological actor sort)

Step 1: Set i= 1 and G′ = G with G′ = (V ′, E′). While V′ 6= ∅ do

a) Find actorv ∈ V ′ which has no incoming edge in E′ and is at
the “leftmost” position regardingπ :

• Set j = 1. While j ≤ |V | do if π( j ) ∈ V ′ and 6 ∃(v′, v′′) ∈
E′ : v′′ = v then stop else set j= j + 1.

• If j > |V | then error (cyclic SDF graph) elsev = π( j ).

b) Setπ ′(i ) = v.

c) Removev and all edges coming from or going tov from G′:
• V ′ = V ′ \ {v},
• E′ = {(v′, v′′) ∈ E′; v′ 6= v ∧ v′′ 6= v}.

d) Set i= i + 1.

For instance, the permutationπ(1) = B, π(2) = A over the nodes of the
SDF graph depicted in Figure 33 would be transformed into the topological
sortπ ′(1) = A, π ′(2) = B. Afterwards, GDPPO is applied toπ ′ and the data
memory requirement of the resulting scheduleS = mmm(iii ) gives the fitness value
of iii : F(iii ) = D(S).

As with the traveling salesman problem in Chapter 3, two order-based ge-
netic operators are used: uniform order-based crossover and scramble sublist
mutation (Davis 1991). Both ensure that the permutation property of individu-
als is preserved.

5.2.3 Comparing the Evolutionary Algorithm and Other Optimization Methods

The EA was tested on several practical examples of acyclic, multirate SDF
graphs as well as on 200 acyclic random graphs, each containing 50 nodes and
having 100 edges in average. The obtained results were compared against the
outcomes produced by the following algorithms:

• APGAN (acyclic pairwise grouping of adjacent nodes) (Bhattacharyya, Murthy,
and Lee 1996) is the first of the two mentioned heuristics. It is a bottom-up ap-
proach and attempts to construct a single-appearance schedule with minimal
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data memory requirements. This procedure of low polynomial time complex-
ity has been proven to give optimal results for a certain class of graphs with
relatively regular structure.

• RPMC (recursive partitioning by minimum cuts) (Bhattacharyya, Murthy, and
Lee 1996) is the second heuristic for generating data memory minimal sched-
ulesS ∈ S∗

1. In contrast to APGAN, it works top-down and shows better perfor-
mance on irregular SDF graphs. RPMC (as well as APGAN) is combined with
GDPPO here.

• RAND is the random search strategy described in Section 3.2.3 on page 47.

• HC stands for hill climbing, a stochastic optimization method which operates
on a single solution. Starting with a random solution, the scramble sublist mu-
tation operator is repeatedly applied until a better solution is found. Then, the
same procedure is performed for the improved solution. Here, the same coding,
mapping function and mutation rate as with the EA are used.

• EA+APGAN is a combination of EA and APGAN where the APGAN solution
is inserted into the initial population of the EA.

• RAPGAN is a randomized version of APGAN and is described in detail in (Zit-
zler, Teich, and Bhattacharyya 1999d). It is controlled by a parameterp which
determines the “degree of randomness” that is introduced into the APGAN ap-
proach. The valuep = 1 means that RAPGAN behaves like the deterministic
APGAN algorithm (no randomization), and asp decreases from 1 to 0, the
deterministic factors that guide APGAN have progressively less influence.

Based on preliminary experiments, see (Zitzler, Teich, and Bhattacharyya
1999d), the population size was set toN = 30 and the probabilities associated
with the operators topc = 0.2 andpm = 0.4. All stochastic algorithms (EA,
RAND, HC, EA+APGAN) ran for 3000 fitness evaluations each, i.e., the op-
timization runs were aborted after the mapping functionmmm had been invoked
3000 times. In the case of RAPGAN, several runs were carried out per graph,
such that the total of the run-time was equal to the EA’s run-time on that par-
ticular graph; the best value achieved during the various runs was taken as the
final result. The randomization parameterp of RAPGAN was set top = 0.5.

5.2.3.1 Practical Examples of SDF Graphs

In all of the practical benchmark examples that make up Table 4 the results
achieved by the EA equal or surpass the ones generated by RPMC. Compared
to APGAN on these practical examples, the EA is neither inferior nor supe-
rior; it shows both better and worse performance in two cases each. However,
the randomized version of APGAN is only outperformed in one case by the
EA. Furthermore, HC and EA show almost identical performance, while RAND
achieves slightly worse results than the other probabilistic algorithms.
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Tab. 4: Comparison of data memory requirement on eleven practical examples.2 The first ten
DSP applications are the same as considered in (Bhattacharyya, Murthy, and Lee 1996),
while the satellite receiver example (11) is taken from (Ritz, Willems, and Meyr 1995).

Example APGAN RPMC RAND HC EA EA +
(RAPGAN) APGAN

1 47 (47) 52 47 47 47 47
2 99 (99) 99 99 99 99 99
3 137 (126) 128 143 126 126 126
4 756 (642) 589 807 570 570 570
5 160 (160) 171 165 160 160 159
6 108 (108) 110 110 108 108 108
7 35 (35) 35 35 35 35 35
8 46 (46) 55 46 47 46 46
9 78 (78) 87 78 80 80 78
10 166 (166) 200 188 190 197 166
11 1542 (1542) 2480 1542 1542 1542 1542

Although the results are nearly the same when considering only 1500 fitness
evaluations, the stochastic optimization methods cannot compete with APGAN
or RPMC concerning run-time performance. For example, APGAN needs less
than 2.3 seconds for all graphs on a SUN SPARC 20, while the run-time of the
EA varies from 0.1 seconds up to 5 minutes (3000 fitness evaluations).

5.2.3.2 Random SDF Graphs

The experiments concerning the random graphs are summarized in Table 5.3

Interestingly, for these graphs APGAN is better than RAND only in 15% of all
cases and better than the EA only in two cases. However, it is outperformed by
the EA 99% of the time. This is almost identical to the comparison of HC and
APGAN. As RPMC is known to be better suited for irregular graphs than AP-
GAN (Bhattacharyya, Murthy, and Lee 1996), its better performance (65.5%) is
not surprising when directly compared to APGAN. Nevertheless, it is beaten by
the EA as well as HC more than 95% of the time. Also, RAPGAN outperforms
APGAN and RPMC by a wide margin; compared to both EA and HC directly,
it shows slightly worse performance.4

These results are promising, but have to be considered in association with
their quality, i.e., the magnitude of the data memory requirement achieved. In

2The following DSP systems were considered: 1) fractional decimation; 2) Laplacian pyra-
mid; 3) nonuniform filterbank (1/3, 2/3 splits, 4 channels); 4) nonuniform filterbank (1/3, 2/3
splits, 6 channels); 5) QMF nonuniform-tree filterbank; 6) QMF filterbank (one-sided tree); 7)
QMF analysis only; 8) QMF tree filterbank (4 channels); 9) QMF tree filterbank (8 channels);
10) QMF tree filterbank (16 channels); 11) satellite receiver.

3The EA ran about 9 minutes on each graph, the time for running APGAN was consistently
less than 3 seconds on a SUN SPARC 20.

4This holds for different values of the randomization parameterp as has been verified ex-
perimentally.
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Tab. 5: Comparison of performance on 200 50-actor SDF graphs; for each row the numbers
represent the fraction of random graphs on which the corresponding heuristic outper-
forms the other approaches.

<
APGAN RAPGAN RPMC RAND HC EA EA +

APGAN

APGAN 0% 0.5% 34.5% 15% 0% 1% 0%
RAPGAN 99.5% 0% 94.5% 93.5% 15.5% 27.5% 21%
RPMC 65.5% 5.5% 0% 29.5% 3.5% 4.5% 2.5%
RAND 85% 6.5% 70.5% 0% 0.5% 0.5% 1%
HC 100% 84.5% 96.5% 99.5% 0% 70% 57%
EA 99% 72% 95.5% 99.5% 22% 0% 39%
EA + APGAN 100% 78.5% 97.5% 99% 32.5% 53.5% 0%

average the data memory requirement achieved by the EA is half the one com-
puted by APGAN and only 63% of the RPMC outcome. Moreover, an improve-
ment by a factor 28 can be observed on a specific random graph with respect to
APGAN (factor of 10 regarding RPMC). Compared to RAND, it is the same,
although the margin is smaller (in average the results of the EA are 0.84% of
the results achieved by RAND). HC, however, might be an alternative to the
EA, although the memory requirement achieved by the EA deviates from the
outcomes produced by HC by only a factor of 0.19% on average. This also
suggests that i) the EA might be improved using a more specialized crossover
operator and ii) simulated annealing, for instance, could also be a good opti-
mization algorithm with this problem. However, this has not been investigated
further in this work. Finally, the RAPGAN results perform worse than 3% of
the EA results with regard to the magnitude of the data memory requirement.

5.3 Trading-off Execution Time and Memory Require-
ments

Bhattacharyya, Murthy, and Lee (1996) have focused on the data memory min-
imization of looped single-appearance schedules. Evidently, this type of sched-
ule is nearly program memory optimal when only inlining and looping is used.
However, it may not be data memory minimal, and in general, it may be de-
sirable to trade-off some of the run-time efficiency of inlining with further re-
duction in program memory requirement by using subroutines, especially with
system-on-a-chip implementations.

Here, the space of arbitrary software implementations(S, F) is explored
where each of the three criteria data memory, program memory, and execution
time is considered as a separate objective. Figure 37 shows the trade-offs be-
tween these goals. On the one hand, there is a conflict between program memory
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Fig. 37: Trade-offs between the three optimization criteria according to the code generation al-
ternatives.

requirement and execution time. While subroutines save program memory, they
are accompanied by an execution time overhead; the same holds for software
loops. In contrast, the pure inlining code generation model generally produces
faster, but also larger programs. On the other hand, looping introduces a conflict
between data memory and program memory requirements. The data memory
needed by an implementation only depends on the order of the actor firings.
However, the firing sequence also determines to which extent looping is appli-
cable; thus certain data memory minimal schedules may not be looped which,
in turn, affects the code size.

In the following, an MOEA implementation for this MOP is presented. It
is applied to a sample rate conversion system as well as to nine of the eleven
practical DSP examples from Section 5.2.3.1. This work has been published
in (Zitzler, Teich, and Bhattacharyya 1999a; Teich, Zitzler, and Bhattacharyya
1999; Zitzler, Teich, and Bhattacharyya 1999c).

5.3.1 Problem Statement

Based on the implementation metrics presented in 5.1.2, this MOP can be for-
mulated for a given SDF graphG = (V, E) as follows:

minimize fff (S, F) = ( f1(S, F), f2(S, F), f3(S, F))

subject to f1(S, F) = D(S)

f2(S, F) = P(S, F)

f3(S, F) = T(S, F)

where (S, F) ∈ XXX = S∗ × F∗

(5.12)

andF∗ denotes the set of all possible implementation functionsF : V → {0, 1}.

5.3.2 Implementation

As depicted in Figure 38, each individual consists of four components: i) actor
firing sequence, ii) loop flag, iii) actor implementation vector, and iv) imple-
mentation model.



5.3. Trading-off Execution Time and Memory Requirements 99

schedule repair

flat schedule
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mmapping function  iindividual  implementation (S,F)

actor firing sequence
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implementation function F
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1

3

Fig. 38: Design space exploration of DSP software implementations: mapping from individual
space to decision space.

The first component represents the order of actor firings and is fixed in length
because the minimal numberq(v) of firings of an actorv ∈ V is known a priori
(cf. Section 5.1.1, page 88). Since arbitrary actor firing sequences may contain
deadlocks, a repair mechanism is applied in order to construct a flat, admissible,
and periodic schedule from the encoded information (Step 1 in the decoding
process, cf. Figure 38):

Alg. 14: (Schedule Repair)

Input: G = (V, E) (SDF graph)
S′ (actor firing sequence)

Output: S′′ (admissible schedule)

Step 1: Initialize S′′ with the empty schedule. For each e∈ E do token(e) =
delay(e).

Step 2: Choose the leftmost actor instancev in S′ which is fireable, i.e.,∀v′ ∈
V : (v′, v) ∈ E ⇒ token(v′, v) ≥ consumed(v′, v).

Step 3: Remove the actor instancev from S′ and append it to S′′.
Step 4: Simulate the firing of the chosen actorv, i.e, for each incoming edge

e = (·, v) ∈ E set token(e) = token(e) − consumed(e) and for
each outgoing edge e′ = (v, ·) ∈ E set token(e′) = token(e′) +
produced(e′).

Step 5: If S′ is not empty then go to Step 2 else stop.

In each loop iteration, the first fireable actor instance is selected (and removed)
from the sequence, and the execution of the corresponding actor is simulated.
This process stops when the entire sequence has been worked off.
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DATCD

1 3 2 8 5 121 7 7
A B C D E F

Fig. 39: A sample rate conversion system (Zitzler, Teich, and Bhattacharyya 1999c): a digital
audio tape (DAT) operating at a sample rate of 48kHz is connected to a compact disc
(CD) player operating at a sample rate of 44.1kHz, e.g., for recording purposes. See
(Vaidyanathan 1993) for details on multistage sample rate conversion.

The loop flag determines whether to use loops as a means to reduce program
memory. If it is set, a looping algorithm called CDPPO (code-size dynamic
programming post optimization) is invoked which transforms the repaired flat
scheduleS′′ into an optimally looped scheduleS (Step 2 in Figure 38); other-
wise the schedule remains flat (S = S′′). Since the run-time of CDPPO is rather
high (O(n4)) considering largen, wheren is the size of the input schedule, the
algorithm can be sped up at the expense of optimality. Altogether, there are
four parametersα1, α2, β1, β2 by which the accuracy of the optimization can
be traded-off with the required run-time. These parameters are set by the user
and fixed per optimization run. Details on CDPPO, which is a generalization of
GDPPO, can be found in (Bhattacharyya, Murthy, and Lee 1995; Zitzler, Teich,
and Bhattacharyya 1999c).

The implementation functionF is encoded by the implementation model
and the actor implementation vector components (Step 3 in Figure 38). The for-
mer component fixes how the actors are implemented: i) all actors are realized
as subroutines (∀v ∈ V : F(v) = 1), ii) only inlining is used (∀v ∈ V : F(v) =
0), or iii) subroutines and inlining are mixed. For the last case, the actor im-
plementation vector, a bit vector of length|V |, defines for each actor separately
whether it appears as inlined or subroutine code in the final program.

Due to the heterogeneous representation, a mixture of different crossover
and mutation operators accomplishes the generation of new individuals. Similar
to the single-objective EA implementation in Section 5.2.2, uniform order-based
crossover and scramble sublist mutation are used for the actor firing sequence
(Davis 1991). The other components of an individual are bit vectors; there,
one-point crossover and bit flip mutation (Goldberg 1989) are applied.

5.3.3 Case Study: Sample Rate Conversion

SPEA was used to compare the design spaces of three real PDSPs and one
fictive PDSP on a sample rate conversion system (CDtoDAT). The SDF graph
for this DSP application, in which a compact disc player is connected to a digital
audio tape, is depicted in Figure 39. It is consistent becauseS∗ is not empty;
for instance, the schedule(7(7(3AB)(2C))(4D))(32E(5F)) is an admissible,
periodic looped schedule for this graph. The minimum number of actor firings
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Tab. 6: The parameters of three well-known PDSPs. All are capable of performing zero over-
head looping. For the TMS320C40, however, it is recommended to use a conventional
counter and branch implementation of a loop in case of nested loops. P1 is a fictive
processor modeling high subroutine overheads.

parameter Motorola
DSP56k

ADSP 2106x TI
TMS320C40

P1

P Oloop 2 1 1 2

P Osubroutine 2 2 2 10

T Oinit
loop 6 1 1 1

T Oiteration
loop 0 0 8 0

T Osubroutine 8 2 8 16

is q(A) = q(B) = 147,q(C) = 98,q(D) = 28,q(E) = 32,q(F) = 160 and
consequently the firing sequence encoded in an individual is of length 147+
147+ 98+ 28+ 32+ 160= 612.

5.3.3.1 Target Processors

The PDSPs under consideration are modeled on the basis of the overhead pa-
rameters defined in Sections 5.1.2.1 to 5.1.2.3:

• POloop: the number of program words for a complete loop; this value takes the
overhead for the loop initialization into account as well as the instructions which
are executed in each loop iteration (e.g., exit testing).

• POsubroutine: subroutine call overhead in program words; for simplicity, it is as-
sumed here that the actors are independent and therefore no context information
must be saved and restored except PC and status registers.

• TOinit
loop: gives the processor clock cycles needed for loop initialization.

• TOiteration
loop : loop overhead (clock cycles) per iteration, which can be caused by

counter increment, branch instructions, etc.

• TOsubroutine: the number of cycles required to execute a subroutine call and a
return instruction and to store and recover context information (PC and status
registers).

As can be observed from Table 6 the DSP56k and the TMS320C40 have high
subroutine execution time overhead; the DSP56k, however, has a zero loop iter-
ation overhead and high loop initialization overhead; and the TMS320C40 has
a high loop iteration overhead but low loop initialization overhead. The fictive
processor P1 models a PDSP with high subroutine overheads.
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5.3.3.2 Experimental Results

For each of the real processors two kinds of experiments were performed: one
time the parameters of CDPPO were set toα1 = 1, α2 = ∞, β1 = 10, β2 = 40
leading to suboptimal looping5, another time the focus was on optimal looping,
where both accuracy and run-time of the CDPPO algorithm were maximum.
For P1 only suboptimal looping was considered.

For both types of experiments, the remaining optimization parameters were:

Number of generationsT : 250
Population sizeN : 100
Maximum size of external nondominated setN : ∞
Crossover ratepc : 0.8
mutation ratepm (scramble sublist) : 0.1
mutation ratepm (bit flip) : 1/L

Concerning the bit vector mutation rate,L denotes the length of the correspond-
ing vector. The size of the external nondominated set was unrestricted in order
to find as many solutions as possible; as a consequence, no clustering was per-
formed.

Moreover, before every run APGAN was applied to the CDtoDAT example.
The resulting solution was inserted in two ways into the initial population: with
and without schedule loops; in both cases,F(v) = 0 for each actorv ∈ V
(inlining). Finally, the setAAA = mmm(PPP) = p(mmm(∪T

t=0PPPt )), which contains all
nondominated solutions found during the entire evolution process, was consid-
ered as the outcome of a single optimization run.

The nondominated fronts achieved by SPEA in the different runs are shown
in Figures 40 to 43. To make the differences between the processors clearer, the
plots have been cut at the top without destroying their characteristics.

The trade-offs between the three objectives are very well reflected by the
extreme points. The rightmost points in the plots represent software implemen-
tations that neither use looping nor subroutine calls. Therefore, they are optimal
in the execution time dimension, but need a maximum of program memory
because for each actor firing there is an inlined code block. In contrast, the
solutions represented by the leftmost points make excessive use of looping and
subroutines which leads to minimal program memory requirements, however
at the expense of a maximum execution time overhead. Another extreme point
(not shown in the figures) satisfiesD(S) = 1021, but has only little overhead in
the remaining two dimensions. It stands for an implementation which includes
the code for each actor only once by using inlining and looping. The schedule
associated with this implementation is the looped single-appearance schedule
computed by APGAN. This indicates that single-appearance schedules can in-
duce significantly higher data memory requirements than what is achievable by
using multiple-appearance schedulesS ∈ S∗ \ S∗

1.

5These CDPPO parameters were chosen based on preliminary experiments.
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Fig. 40: Trade-off surfaces for the Motorola DSP56k (left: suboptimal looping, right: optimal
looping).
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Fig. 41: Trade-off surfaces for the ADSP 2106x (left: suboptimal looping, right: optimal loop-
ing).
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Fig. 42: Trade-off surfaces for the TMS320C40 (left: suboptimal looping, right: optimal loop-
ing).
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Fig. 43: Trade-off surface for the fictive processor P1 (suboptimal looping).
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Tab. 7: Comparison of the trade-off fronts achieved with different CDPPO parameters (subopti-
mal versus optimal looping). The first two rows give for each PDSP the sizes of the two
nondominated sets found. In the last two rows, the nondominated sets are compared for
each PDSP separately using theC metric.

Motorola
DSP56k

ADSP 2106x TI
TMS320C40

#solutions (subopt. loop.) 371 350 336
#solutions (opt. loop.) 112 88 73
C(subopt. loop., opt. loop.) 49.2% 65.9% 16.4%
C(opt. loop., subopt. loop.) 67.4% 61.7% 66.7%

Furthermore, the influence of looping and subroutine calls is remarkable.
Using subroutines does not interfere with data memory requirement; there is
only a trade-off between program memory requirement and execution time.
Subroutine calls may save much program memory, but at the same time they
are expensive in terms of execution time. This fact is reflected by “gaps” on
the execution time axis in Figures 40 and 42. Looping, however, depends on
the schedule: schedules which can be looped well may have high data memory
requirements and vice versa. This trade-off is responsible for the variations in
data memory requirements and is illustrated by the points that are close to each
other regarding program memory and execution time, but strongly differ in the
data memory dimension.

Comparing the three real processors, one can observe that the ADSP 2106x
produces less execution time overhead than the other PDSPs which is in accor-
dance with Table 6. Subroutine calls are most frequently used in case of the
TMS320C40 because of the high loop iteration overhead.

For processor P1 (Figure 43), it can be seen that implementations with min-
imal code size require much more program memory than the corresponding
program memory minimal solutions for the other PDSPs. The reason is that
subroutines are accompanied by a high penalty in program memory and execu-
tion time with P1. In fact, none of the 186 nondominated solutions found used
subroutine calls for any actor.

The effect of CDPPO on the obtained nondominated front can be clearly
seen by comparing the results for suboptimal and optimal looping in Figures 40
to 42. In general, the nondominated solutions found require less data mem-
ory when the CDPPO parameters for maximum accuracy (and run-time) were
used; the trade-off surface becomes much more flat in this dimension. It is
also remarkable that for each real PDSP several solutions were generated that
need less program memory than the implementation with the lowest code size
when using suboptimal looping. Furthermore, Table 7 shows that the fronts
for optimal looping cover the corresponding fronts for suboptimal looping by
approximately two thirds, although the former contain substantially less points
than the latter. As a result, the optimization time spent by the CDPPO algorithm
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SPEA

NPGA

Fig. 44: Comparison of SPEA and NPGA on nine practical DSP applications. Each rectangle
contains nine box plots representing the distribution of theC values; the leftmost box
plot relates to DSP system 1 from Table 4, the rightmost to DSP system 9. The scale
is 0 at the bottom and 1 at the top per rectangle. Furthermore, the upper right rectangle
gives the fraction of the SPEA fronts weakly dominated by the corresponding NPGA
fronts. The other rectangle refers to the other direction (“C(SPEA, NPGA)”).

has a large influence on the shape of the nondominated front.

5.3.4 Comparing Two Evolutionary Multiobjective Optimizers

The first nine practical DSP applications from Table 4 formed the basis to com-
pare the performance of the SPEA implementation with an NPGA implemen-
tation. With these SDF graphs, the number of actors varies between 12 and 92,
the minimum length of the associated actor firing sequences ranges from 30 to
313.

On each example, SPEA and NPGA ran in pairs on the same initial pop-
ulation, using optimal looping; then the two resulting nondominated sets were
assessed by means of theC function. As with the other MOEA comparisons,
the offline performance was considered, i.e., the setAAA = p(mmm(∪T

t=0PPPt)) was
the outcome of an optimization run. Altogether, eight of these pairwise runs
were performed per application, each time operating on a different initial pop-
ulation. Furthermore, the same parameters as listed in on page 102 were used
except that for SPEA the population size was reduced toN = 80 and the size
of the external nondominated set was limited toN = 20. Concerning NPGA,
the domination pressure was set totdom = 10 following the recommendations
given in (Horn and Nafpliotis 1993); the niching parameterσshare= 0.4886 was
calculated based on guidelines described in (Deb and Goldberg 1989).

The experimental results are summarized in Figure 44. On all nine applica-
tions, SPEA weakly dominates more than 78% of the NPGA outcomes (in av-
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erage more than 90%), whereas NPGA weakly dominates in average less than
10% of the SPEA outcomes. In other words, the nondominated sets generated
by SPEA dominate most parts of the corresponding NPGA sets, whereas only
very few solutions found by NPGA are not covered. This substantiates the re-
sults presented in Chapter 3 and indicates that the proposed test problems reflect
important characteristics of this real-world application.

5.4 Summary
In this chapter, the problem of automatic software synthesis from synchronous
data flow graphs was addressed. Major results are:

• When disregarding the additional run-time needed, an EA was shown to be
superior to two state of the art heuristics for minimizing data memory require-
ments with regard to a restricted class of software implementations. However,
other stochastic approaches like hill climbing might be alternatives to the EA.

• A design space exploration for this problem was performed using an MOEA.
The investigation revealed that there is a variety of different software implemen-
tations representing possible trade-offs between the criteria data memory, pro-
gram memory, and execution time. Prior work in this field has mainly focused
on one of the objectives, not taking the trade-off issue into account. Moreover,
it could be observed that the shape of the obtained trade-off surface strongly
depends on the chosen target processor.

• As with the “artificial” test problems, SPEA provided better performance than
NPGA on this application. This supports the supposition that elitism is manda-
tory in evolutionary multiobjective optimization.
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6
Conclusions

6.1 Fundamental Results

The goal of the present thesis was to compare and improve existing evolutionary
approaches to multiobjective optimization, and to apply evolutionary multicri-
teria methods to real-world problems in the domain of system design. Essential
results are:

• A comprehensive experimental methodology to quantitatively compare multi-
objective optimizers has been presented. In particular, several quantitative per-
formance measures as well as a set of test functions ranging from NP-hard to
continuous problems have been proposed. As the experimental results have
shown, both measures and test problems are sufficient to reveal the performance
differences of various MOEA implementations.

• The first time, numerous evolution-based techniques have been compared em-
pirically on different problems by means of quantitative metrics. In contrast
to what was expected beforehand, a hierarchy of algorithms emerged. Further-
more, elitism has been proven to be an important factor in evolutionary multi-
objective search.

• A novel approach, the strength Pareto evolutionary algorithm (SPEA), has been
introduced which combines established and new techniques in a unique manner.
It clearly outperformed other MOEA implementations on the test problems as
well as the two real-world applications under consideration.

• The elitism scheme of SPEA has been generalized for incorporation in arbitrary
evolutionary approaches. Its efficiency has been shown for several non-elitist
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MOEAs: performance improved significantly when using this particular elitism
concept.

• The widespread opinion that (elitist) MOEAs can have clear advantages over
traditional multicriteria optimization methods has been substantiated experi-
mentally. In spite of significantly less computation effort, SPEA provided better
solutions than the weighting and the constraint methods on the two-dimensional
test problems as well as on the system synthesis application.

• The first systematic approach to the multidimensional exploration of software
implementation for digital signal processing algorithms has been presented. The
optimization framework takes all of the three objectives data memory require-
ment, program memory requirement, and execution time into account, while
prior work has mainly focused on the single-objective optimization of a more
restricted class of implementations.

6.2 Future Perspectives
Based on this work, promising areas for future research may be:

• SPEA generally outperforms the other MOEAs under consideration. Identify-
ing the major factors responsible for this gap in performance can help to develop
better algorithms; preliminary experiments indicate that the external set of non-
dominated solutions plays an important role.

• Elitism has been shown to be mandatory in evolutionary multiobjective op-
timization, and consequently the question arises how elitism is incorporated
most effectively in MOEA implementations. Thus, a comparison of different
elitism concepts in combination with various test problems, fitness assignment
schemes, and niching methods is needed.

• EAs seem to be especially suited to multiobjective optimization, and still there
are hardly any alternatives when the goal is to capture multiple Pareto-optimal
solutions in one run instead of finding a single solution. In order to clarify
the question of whether MOEAs can do better than other blind search strate-
gies, as some researchers suppose, single-objective optimization methods like
hill climbing, tabu search, simulated annealing, etc. might be extended to the
multiobjective case. A comparison of the resulting algorithms to MOEAs, for
which the foundation has been laid in this work, may lead to new insights in this
context.

• The experimental results have shown that an elitist MOEA can outperform an
elitist single-objective EA based on the weighting approach in spite of signif-
icantly lower computation effort. That means the nondominated set achieved
by the MOEA in one optimization run dominates any solution found by the
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single-objective EA, independent of the chosen linear combination. This might
be interpreted as a hint that synergies emerge when the search space is sampled
for multiple Pareto-optimal solutions in parallel.

Therefore, it might be interesting to investigate the following questions:

a) Can these effects be observed in general or only on particular problems?
In the latter case, the problem characteristics responsible for this phe-
nomenon must be identified.

b) What are the reasons for these effects?The hope is to achieve a better
understanding of evolutionary multiobjective optimization and possibly to
identify the factors of success.

c) Is there a systematic way of improving single-objective optimization by
means of multiobjective algorithms?The underlying idea is to transform
an SOP into an MOP by dividing the single criterion into multiple, con-
flicting criteria. This might be a new possibility to deal with premature
convergence. However, this methodology would probably not be applica-
ble to all single-objective optimization problems.

• Concerning the software synthesis application, the implementation model may
be refined such that, e.g., subroutine overheads are covered more precisely and
different buffer models are considered. Furthermore, how to best trade-off accu-
racy and run-time of the looping algorithm CDPPO in order to achieve optimal
results for a given period of time may also be investigated.
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