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Abstract

This paper discusses methods for generating or approximating the Pareto set of multiobjective optimization prob-
lems by solving a sequence of constrained single-objective problems. The necessity of determining the constraint value a
priori is shown to be a serious drawback of the original epsilon-constraint method. We therefore propose a new, adap-
tive scheme to generate appropriate constraint values during the run. A simple example problem is presented, where the
running time (measured by the number of constrained single-objective sub-problems to be solved) of the original epsi-
lon-constraint method is exponential in the problem size (number of decision variables), although the size of the Pareto
set grows only linearly. We prove that––independent of the problem or the problem size––the time complexity of the
new scheme is O(km�1), where k is the number of Pareto-optimal solutions to be found and m the number of objectives.
Simulation results for the example problem as well as for different instances of the multiobjective knapsack problem
demonstrate the behavior of the method, and links to reference implementations are provided.
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1. Introduction

An important task in multiobjective optimiza-
tion is the identification of Pareto-optimal solu-
tions. Their knowledge allows a decision maker
to learn more about the trade-offs among the dif-
ferent objectives. From both a practical as well
as a theoretical viewpoint it is sometimes desirable
ed.
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to identify all Pareto-optimal solutions. This max-
imizes the choice for a decision maker in search of
a final solution. In addition, the growing interest in
approximate methods creates a need for bench-
marking, which is often difficult without the
knowledge of the true Pareto set. Thus, methods
to generate the Pareto set, e.g., for simple bench-
mark problems or small instances of difficult prob-
lems, are useful auxiliary tools.

Whenever a multiobjective problem has a finite
number of Pareto-optimal solutions, one would
expect being able to identify all of them using
one of the traditional generating methods pro-
posed in the literature, detailed overviews and dis-
cussion of such methods can be found in [7,10,5].
Many multiobjective optimization algorithms––
heuristics as well as exact methods––use variations
of these generation methods as a frame, and there-
by implicitly follow this assumption. This must be
taken with caution, however. The weighted sum
method, for example, only guarantees to find sup-
ported Pareto-optimal solutions, i.e., those lying in
convex regions of the objective space. Non-sup-
ported solutions can only be found coincidently
when they are discovered as intermediate solutions
on the way towards a supported solution. The
epsilon-constraint method [6] works by pre-defin-
ing a virtual grid in the objective space and solving
different single-objective problems constrained to
each grid cell. All Pareto-optimal solutions can
be found only if this grid is fine enough such that
at most one Pareto-optimal solution is contained
in each cell. For a general problem, the choice of
the grid size parameter is therefore not only very
difficult, it also influences the running time of the
whole algorithm.

Most generating methods work by transform-
ing the multiobjective problem into a sequence of
parameterized single-objective problems such that
the optimum of each single-objective problem cor-
responds to a Pareto-optimal solution. Thereby,
these methods rely on the availability of a suitable
single-objective optimization algorithm. In this
sense, the generating methods represent meta-
strategies whose tasks are (i) to determine an
appropriate scalarization and (ii) to provide a
scheme to vary the parameters. As to the scalariza-
tion techniques, a lot is known with respect to the
properties of the obtained single-objective optima,
e.g., whether they are supported, weakly, or prop-
er Pareto-optimal. However, not much work has
been done with respect to the time complexity of
the schemes to vary the parameters.

To the best of our knowledge, no scheme is
available that can determine the whole Pareto set
by a number of single-objective subproblems
which depends only on the number of Pareto-opti-
mal solutions and not on additional properties
such as the distribution of the Pareto-optimal
objective vectors. The purpose of this paper is to
present such a scheme based on the epsilon-con-
straint method. We prove the correctness of the
new algorithm and that its running time, measured
by the number of calls of a single-objective optim-
izer, is bounded by O(km�1), where k is the number
of Pareto-optimal objective vectors and m the
number of objectives. In contrast, the running time
of the original epsilon-constraint method [6] is
determined by the product of the ratio of the range
to the minimum distance between two solutions in
each objective. This expression is at least of order
km�1, but can also be exponential in k as we will
show on a simple two-objective example. A further
advantage besides the considerably lower worst-
case time complexity of the new method is that it
alleviates the necessity to guess an appropriate grid
size because the constraint values are adaptively
modified during the run.

Our method is also applicable when no efficient
algorithm to solve the constrained single-objective
problems is available, e.g., when these problems
are NP-hard. In such cases, a heuristic method
can be used to obtain an approximate solution.
Our method, used with a heuristic to solve the
resulting single-objective problems, thereby results
in a metaheuristic whose aim is to find a set of
approximate Pareto-optimal solutions accessible
to the single-objective heuristic within a given fixed
running time bound.
2. Problem scenario

The problem we are dealing with in this paper is
to find or to approximate the Pareto set of a gen-
eral multiobjective problem with m objectives. We
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assume that all objective functions are to be
maximized.

Definition 1 (Pareto optimality). Let f :X ! F

where X is called decision space and F � Rm

objective space. The elements of X are called
decision vectors and the elements of F objective

vectors. A decision vector x* 2 X Pareto optimal if
there is no other x 2 X that dominates x*, where x
dominates x*, denoted as x � x*, if fi(x) P fi(x*)
for all i = 1, . . .,m and fi(x) > fi(x*) for at least one
index i. The set of all Pareto-optimal decision
vectors X* is called Pareto set. F* = f(X*) is the
set of all Pareto-optimal objective vectors and
denoted as Pareto front.

In cases where several Pareto-optimal decision
vectors map to the same Pareto-optimal objective
vector, we are satisfied with having one represent-
ative decision vector for each Pareto-optimal
objective vector. This corresponds to finding one
optimal solution in the single-objective case [5].

Several methods exist devoted to this task, usu-
ally referred to as ‘‘a posteriori’’ or ‘‘non-domi-
nated solution generation’’ methods [7]. They
typically define a set of differently parameterized
single-objective surrogate problems and apply
multiple runs of a single-objective optimizer. The
choice of the parameter values determines, which
specific elements of the Pareto set are found. It is
in general a difficult and sometimes impossible
task to choose a sequence of parameter values such
that the whole Pareto front is discovered. Consider
for example the popular methods based on the
aggregation of the different objectives via a
weighted sum. Different weight vectors would ide-
ally lead to finding different elements of the Pareto
front, but for an unknown problem it is not clear
what weight combination to choose. Even if all
possible weight combinations were used, it cannot
be guaranteed to find Pareto-optimal solutions in
concave regions of the Pareto front.

Another traditional method from the field of
multiobjective optimization to generate the whole
Pareto front is the epsilon-constraint method [6].
The epsilon-constraint method works by choosing
one objective function as the only objective and
the remaining objective functions as constraints.
By a systematic variation of the constraint bounds,
different elements of the Pareto front can be
obtained. The method relies on the availability of
a procedure to solve constrained single-objective
problems, here referred to as opt(f, �, � 0). The de-
tails of this procedure are not relevant for the con-
sideration of this study. We simply assume that it
terminates after a fixed time T and returns either
the optimum of the constrained problem (f,�, � 0)

lex max fðxÞ ¼ ðf1ðxÞ; . . . ; fmðxÞÞ ð1Þ
subject to �i < fiðxÞ 6 �0i 8i 2 f2; . . . ;mg ð2Þ

x 2 X ð3Þ

(if it exists), an approximation of it, or null (if the
feasible region is empty). The notation �lex max�
refers to lexicographic maximization of the m dif-
ferent objectives. The reason for this is that there
might be several solutions with maximum f1-value.
Out of these, we want to find the one with maxi-
mum f2-value, and so forth. In contrast, if the
single-objective optimizer stops already after
maximizing only the first objective, the resulting
solution is only guaranteed to be weakly Pareto-
optimal [5]. If the given single-objective optimizer
is only able to solve a standard constrained sin-
gle-objective problem, it can easily adjusted to
solve the above �lex max� problem by m runs suc-
cessively optimizing the different objectives, while
in each run the obtained optimal value is added
as a constraint. If T 0 is an upper bound for the run-
ning time of the single-objective runs, an upper
bound of T = mT 0 for the opt(f, �,� 0) procedure
can be assumed.
3. Drawbacks of the original epsilon-constraint

method

Algorithm 1 gives an implementation according
to the original description of the epsilon-constraint
method from [3, p. 285] for the case of two objec-
tives. The idea of the traditional epsilon-constraint
method is to iteratively increase the constraint
bound by a pre-defined constant d. The necessity
to choose such a value represents also the main
drawback of this approach. Since only one solu-
tion can be found in each interval, the discretiza-
tion has to be fine enough not to ‘‘miss’’ any



Algorithm 1. Bi-objective Epsilon-Constraint
Method

Input: Objective bounds f ; �f 2 R and incre-
ment d 2 R

1: P := ;
2: � :¼ �f
3: while � P f do

4: x := opt(f,� � d,�)
5: if 9=X 0 2 P such that x 0 � x then

6: P := P [ {x}
7: end if

8: � := � � d
9: end while

Output: Set of Pareto-optimal decision vec-
tors P
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Pareto-optimal solution. In the worst case, the dif-
ference between objective vectors might be as small
as the machine accuracy of the computer used to
run the algorithm.

Choosing such a small d, though, might cause a
large number of redundant runs of the single-
objective optimizer because they are constrained
to an objective space subset which contains no
Pareto-optimal objective vector. Thereby, a lot of
search effort might be wasted and in fact prevents
this method from being applicable to certain prob-
lems, as we demonstrate below. All these problems
occur likewise in the epsilon-constraint metaheu-
ristic proposed by [11], as the strategy to vary
the parameters is essentially the same as in the
original method.

The following example problem shows that the
time complexity of the original epsilon-constraint
method can be exponential in the problem size n,
while the size of the Pareto set is only linear in n.

Example 1. The pseudo-Boolean function BBV :
f0; 1gn ! N2 is defined as

BBVðx1; . . . ; xnÞ ¼
Xn
i¼1

2n�ixi;
Xn
i¼1

2i�1ð1� xiÞ
 !

:

The example problem is a bi-objective generali-
zation of the BINARY VALUE (BV) problem
proposed in [4] for the complexity analysis of
evolutionary algorithms. The name refers to the
fact that a decision vector is the binary representa-
tion of the integer number given by its function
value. Here, we use this BV function as the first
objective, while the second objective is the BV
function applied to the reversed and inverted
sequence of bits.

By construction it is apparent that the BBV-
function is actually a bijection from X into
BBV(X) the objective space F contain 2n distinct
elements, hence jXj = jFj. However, its Pareto set
contains exactly n + 1 elements, which have the
following simple description:

Proposition 1. A decision vector x 2 X is Pareto-

optimal in the BBV problem, if and only if it has the

form 1k0n�k, k 2 {0,1, . . ., n}.

Proof. ‘‘)’’: Assume that a Pareto-optimal deci-
sion vector x does not have the claimed form. This
means that there is a k such that xk = 0 and
xk+1 = 1. If we exchange these two bits, both
objective values are increased, therefore x cannot
be Pareto-optimal.

‘‘(’’: Assume x has the form 1k0n�k and is
dominated by x 0 2 X. Either the first or the second
objective value of x 0 must be larger than the
respective objective value of x. The relation
f1(x

0) > f1(x) can only be achieved by keeping the
k ones fixed and replacing an arbitrary number of
the zeroes by ones, which implies f2(x

0) < f2(x). The
relation f2(x

0) > f2(x) can only be achieved by
keeping the n � k zeroes fixed and replacing an
arbitrary number of the ones by zeros, which
implies f1(x

0) > f1(x). In both cases, x 0 does not
dominate x, which contradicts the assumption. h

Proposition 2. The expected running time of Algo-

rithm 1 on the BBV problem is bounded below by

X(2n Æ T).

Proof. Consider the three Pareto-optimal decision
vectors a = 0n, b = 10n�1 and c = 110n�2. The cor-
responding objective vectors are f(a) = (0,2n � 1),
f(b) = (2n�1,2n � 2) and f(c) = (2n�1 + 2n�2,
2n � 4). Assume a d P 4 is chosen and denote with
�(t) the value of the current (upper) constraint in
iteration t of the algorithm. We will show that
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there no way to select a starting value �f such that
the three objective vectors f(a), f(b) and f(c) are
found in different iterations of the while-loop of
the algorithm: either the decision vectors a and b
or b and c will fall into the same interval. In order
for a being feasible, the current constraint bound
must be �(t) 2 [2n � 1,2n � 1 + d]. Now consider
the two cases �(t) 2 [2n � 1,2n � 2 + d] and �(t) 2
[2n � 1,2n � 1 + d]. If �(t) 2 [2n � 1,2n � 1 + d], b
will also be a feasible solution in this iteration
and, as it has a larger f1-value than a, a will not
be returned by opt in this iteration. In the next
iteration, �(t+1) < 2n � 2 < f2(a), hence a is infeasi-
ble and will never be found. If �(t) 2 [2n � 2,
2n � 1 + d], then in the next iteration �(t+1) 2
[2n � 2,2n � 1]. In this case, c is also feasible,
and, as it has a larger f1 value than b, b will not
be returned by opt in this iteration. In the subse-
quent iteration, �(t+2) < 2n � 5 < f2(b), hence b is
infeasible and will never be found. Therefore,d < 4
must be chosen, and at least (2n � 2)/4 iterations
are necessary to find all Pareto-optimal objective
vectors. h

It could be argued that the problem here is only
caused by an inappropriate definition of the con-
straint increments d. For our example problem, it
would indeed be possible to define a different set
of, e.g., O(n) exponentially increasing constraint
bounds that would lead to finding every single
Pareto-optimal solution. But it is important to
note that in a general scenario, where the solutions
can be distributed arbitrarily in the objective
space, such information is not available.
4. A new, adaptive epsilon-constraint method

Our idea to circumvent the deficit of the origi-
nal epsilon-constraint method is to make use of
information about the objective space as soon as
it is available, and that is during the search proc-
ess. This is the concept behind the new adaptive
epsilon-constraint method described in this
section.

In the two-objective case, the adaptive variation
of the constraints is straightforward. There is only
one constraint value to adapt, which can be
achieved by starting with an arbitrary lower bound
for f2 and iteratively increasing the constraint on f2
using the f2-value of the optimum of the previous
single-objective run. Such a scheme has been em-
ployed in [12] for generating all Pareto-optimal
solutions for minimizing total cost and bottleneck
time in a transportation problem. The three objec-
tive extension proposed in [12], however, is only
able to find those Pareto-optimal solutions whose
projection onto the f1 � f2 plane equals the Pareto
front of the two-objective problem. This indicates
that the generalization of the scheme for higher
objective space dimensions is more difficult and
has therefore remained unsolved. The scheme we
propose in this paper works for arbitrary numbers
of objectives m. It is guaranteed to find all Pareto-
optimal solutions for any m, provided that the
underlying single-objective algorithm can solve
the single-objective subproblems. For the special
case of m = 2, our algorithm is equivalent to the
scheme from [12].

The new algorithm is given in pseudo-code as
Algorithm 2. The core of the algorithm is an
m � 1 dimensional hypergrid, which partitions
the whole objective space into rectangular axis-
parallel co-domains with respect to objectives f2
to fm. The coordinates for this grid are determined
by the function values of the already identified
Pareto-optimal solutions. These coordinates are
stored in the matrix e = (e2, . . .,em), where the ei
are vectors containing the grid coordinates for
objective i, defined by the fi-values of all Pareto-
optimal solutions found so far. These vectors ei;
initially contain only minus and plus infinity, so
that the initial grid is composed of only one cell,
the whole potential objective space, Rm.

In each iteration of the outer loop (line 2–13),
one new Pareto-optimal point is sought. This is
achieved by performing a constrained single-objec-
tive optimization run for each grid cell (line 7) in
decreasing order of the cell index i. After a new
Pareto-optimal point x is found, this point is added
to the set of already found solutions, P, and the
grid is updated by including the objective values
of x. For each objective j 2 {2, . . .,m}, the value
fj(x) is inserted into the sorted vector ej. If no
feasible solution can be found or the solution is
dominated by any previously found solution, the



Algorithm 2. Adaptive m-objective Epsilon-Constraint Method

1: P := ;; Q := ;; ej := (�1,1) "2 6 j 6 m

2: i := (jPj + 1)m�1 {initialize subregion counter}
3: i := i � 1
4: if i < 0 then stop {no new solution found}
5: (�,� 0) := getConstraints(i,e,P)
6: if [�,� 0] � Q then goto 3 {if subregion already searched}
7: x := opt(f, �,� 0) {solve single-objective problem}
8: if x = null then Q := Q [ [�, � 0]; goto 3 {if subregion empty}
9: if $ y 2 P :y � x then Q := Q [ [�,� 0]; goto 3 {if solution dominated}
10: P := P [ {x}
11: Q := Q [ [�, f(x)]
12: e := updateConstraints (f(x),e)
13: goto 2 {new Pareto-optimal solution was found}

Output: Set of Pareto-optimal decision vectors P

Function getConstraints (i,e,P)
1: for j := 2 to m do
2: d := i mod (jPj + 1)
3: i := (i � d)/(jPj + 1)
4: �j :¼ ejd {lower constraint on objective j}
5: �0j :¼ ejdþ1

{upper constraint on objective j}
6: end for
7: return (�, � 0)

Function updateConstraints (y,e)
1: for j := 2 to m do

2: i := 1
3: while eji < yj do
4: i := i + 1 {search for insertion position}
5: end while

6: ej :¼ ðej1 ; . . . ; eji�1
yj; ejiþ1

; . . . ; ejjP jþ2
Þ {insert new constraint value}

7: end for
8: return e := (e2, . . .,em)
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region ½�; �0� :¼ fy 2 Rm j 82 6 j 6 m : �j 6 yj 6
�0jg, i.e., the cuboid between the vectors � and � 0 is
added to the set of already searched regions Q.
The purpose of function getConstraints is to trans-
late the iteration counter i into the m � 1 corre-
sponding indices to retrieve the right constraint
values from each of the ei vectors. The working
principle of the algorithm is depicted in Fig. 1.
Theorem 1. The running time of Algorithm 2 to

discover a Pareto front of an m-objective problem

with k elements is O(km�1 Æ T), where T is the
running time of the single-objective optimizer.

Proof. Let K denote the number of times that the
single-objective optimizer will be called during the
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Fig. 1. Working principle of the adaptive epsilon-constraint
algorithm. The top diagram shows the state of the algorithm at
the beginning of the third iteration of the outer loop (line 2). So
far, two Pareto-optimal solutions, x(1) and x(2), have been
found, and the constraint vectors have jPj + 2 = 4 components
each, dividing the objective space into nine subspaces. The grid
cells correspond to the projection of these subspaces into the f2–
f3 plane. They are numbered according to the corresponding
iteration counter i. Starting will cell 8, the single-objective
optimizer uses the respective upper and lower constraint values.
The hypothetical results are depicted in the lower diagram. For
cells 8 and 7, the optimizer returns null indicating that this
region is empty. For cell 6, the optimizer returns a new Pareto-
optimal point x(3) and the loop is finished (jump back to line 2).
The two additional constraint values defined by f(x(3)) are
indicated with dotted lines.
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run of the algorithm. Our aim is to bound K. The
procedure opt is invoked with different combina-
tions of upper and lower constraint vectors (�, � 0).
For a given constraint matrix e, the number of
different combinations equals (jPj + 1)m�1, as used
in line 2 to initialize the iteration counter. This
number is maximal at the end of the run, when
f(P) = F*, i.e., the whole Pareto front has been dis-
covered. For each current value of jPj, the con-
straint combinations represent a partition of the
search space. In addition, each new objective vec-
tor leads to the inclusion of m � 1 new constraint
values and therefore a subdivision of some of the
previous constraint regions. Since the searched
regions are monitored in the set Q, line 3 guaran-
tees that opt will not be invoked for any region
that is contained in Q and thus marked as empty.
Hence, opt cannot be invoked for more than
(jF*j + 1)m�1 times. With T being an upper bound
on the running time of opt, the claimed bound for
the total running time follows.

It remains to be shown (1) that only Pareto-
optimal solutions will enter the set P and (2) that
no Pareto-optimal solution will be missed, i.e.,
there is no Pareto-optimal objective vector that is
not represented by some element of P when the
algorithm terminates. For (1) assume that x is not
Pareto-optimal. As f(x) is the lexicographically
maximal objective vector from the current grid
cell, x is not dominated by any other element from
this cell. All elements dominating x must therefore
either belong to the same grid cell, which was
already ruled out, or to a grid cell with all lower
constraint bounds at least as large as those of the
current grid cell. However, the decrementing of the
counter i together with the mechanism to calcu-
late the grid coordinate indices in function
getConstraints guarantees that all such grid cells
have already been investigated previously to the
current grid cell. Since adding a new point to P

causes the reset of the iteration counter (jump
from line 13 to line 2), all Pareto-optimal solutions
from these cells are already contained in P. If x is
dominated by any of these solutions, line 9
prevents it from being included in P. For (2)
assume that there is some g 2 F* for which there is
no x 2 P with f(x) = g and the algorithm termi-
nates. This means that i < 0 in line 4, which implies
that for all i with (jPj + 1)m,�1 > i P 0, opt either
returned null or a solution dominated some
element of P, or was not executed because the
corresponding region is already contained in Q.
Since the union of the regions for all i with
(jPj + 1)m�1 > i P 0 represents a partition of the
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whole search space, some of it must contain an y

with f(y) = g, which will be found by a call to opt

for this region. Hence, a contradiction is reached,
which completes the proof. h
 1
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g(

n^
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_2
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log(n^2 - BBV_1)

Fig. 2. BBV problem: Pareto fronts for n = 10, 20, and 40. The
objective values have been transformed according to BBVi #

log(2n � BBVi).
5. Simulation results

This section presents some simulation results of
the new algorithm on the example function BBV as
well as on some instances of the multiobjective
knapsack problem.

5.1. The BBV Problem

For the BBV problem, we use Algorithm 2 as a
metaheuristic. An evolutionary algorithm (EA) is
used for the single-objective subproblems, in this
case a simple (l + k)-EA. In the EA, the n decision
variables are represented as a binary vector with a
mutation rate of 1/n and no recombination. A
population size of l = k = n + 1 was used. Each
single-objective run was terminated after 10n gen-
erations. This value was determined experimen-
tally such that for each instance, the whole
Pareto set was generated in the majority of the
trials. Table 1 compares the number of single-
objective runs used by the new algorithm to those
used by the original method. The parameters for
the original method (Algorithm 1) were f ¼ �1;
�f ¼ 2n � 1 and d = 1. The results match with the
predictions of Proposition 2 and Theorem 1 and
demonstrate the immense (linear versus exponen-
tial) difference with respect to the dependency
of the running time on the problem size n. The
Table 1
BBV problem: Number of single-objective runs used by the
adaptive (Algorithm 2) and by the original epsilon-constraint
method (Algorithm 1)

n jF*j Algorithm 2 Algorithm 1

2 3 4 5
4 5 6 17
10 11 12 1025
20 21 22 1048577
40 41 42
80 81 82
experiments for the original method were there-
fore only performed up to n = 20. The achieved
Pareto fronts are plotted in Fig. 2 for different
values of n. For better visualization, the axis
have been transformed according to BBVi #

log(2n � BBVi).

5.2. The multiobjective knapsack problem

The multiobjective knapsack problem is one of
the most extensively used benchmark problem for
multiobjective metaheuristics (see, e.g., [13,9,11]).
Given is a set of n items, each of which has m profit
and k weight values associated with it. The goal is
to select a subset of items such that the sums over
each of their kth weight values do not exceed given
bounds and the sums over each of their mth
profit values are maximized. A representation as
a pseudo-Boolean optimization problem is typi-
cally used, where the n binary decision variables
denote whether an item is selected or not. For
empirical studies, the parameters of the problem,
the weight and profit values, are usually drawn
at random from a given probability distribution.
Here, the weights and profits are randomly chosen
integers between 10 and 100, and the capacities are
set to half of the sum of the weights.

For this problem we used the Algorithm 2 both
as a metaheuristic to approximate the Pareto set
and as an exact method to generate the whole
Pareto set. The metaheuristic version again uses



Table 2
Knapsack problem: Comparison of the results for the exact method using an ILP-solver (upper section) with the metaheuristic using
a single-objective EA (lower section)

n 10 20 30 40 50

ILP-solver Single-objective runs 76 1618 9867 26,839 128,676
total CPU time 2 minutes 37 minutes 2 hours 4 hours 24 hours
jPj (note: P = F*) 9 61 195 389 1024

EA Single-objective runs 84 398 1520 2505 14,496
generations per run 20 40 60 80 100
jPj 10 27 66 84 209
jP \ F*j 7 23 16 25 45
jP\F �j
jF �j 77.8% 37.7% 8.2% 6.4% 4.4%
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Fig. 3. Knapsack problem: plots of the obtained Pareto fronts
for m = 3 objectives, n = 30 (top) and n = 20, n = 50 (bottom),
both methods.

940 M. Laumanns et al. / European Journal of Operational Research 169 (2006) 932–942
the EA described above as the underlying single-
objective optimization algorithm. Differently to
the BBV problem, uniform crossover is now used
in the EA and the mutation rate was set to 2/n.
The population size was set to l = k = n. The ex-
act version employs CPLEX [1,8], thereby solving
the resulting integer linear program (ILP) exactly
via a branch-and-bound algorithm.

Table 2 summarizes the results obtained for dif-
ferent instances of the knapsack problem with
three objectives. While the exact version only
requires one run of the whole algorithm for each
instance, the EA results are averaged over 10 inde-
pendent trials. It can be seen that the size of the
Pareto set, and therefore the total running time
of the exact method, increases very quickly with
the problem size, which makes it very difficult to
solve larger instances of the three-objective knap-
sack problem to optimality. The empirical test also
shows that the running time of the branch-and-
bound algorithm increases considerably in later
iterations, when the objective space becomes more
dense and the constraint bounds become very
tight. Nevertheless, it is noteworthy that to the
best of our knowledge no exact Pareto fronts have
been computed so far for the three-objective knap-
sack problem, probably due to the lack of an
appropriate generating method besides complete
enumeration. Note that the total number of sin-
gle-objective runs given in Table 2 is also lower
than the upper bound given in Theorem 1. By
choosing reasonable running times, the metaheu-
ristic can of course be applied to arbitrarily large
problems. The results indicate, however, that it
has increasing difficulty to find Pareto-optimal
solutions: the coverage value [13], i.e., the percent-
age of discovered Pareto-optimal solutions, de-
creases rapidly. Fig. 3 gives a visual impression
of the obtained three-dimensional Pareto fronts.
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5.3. Implementation notes

Both the metaheuristic and the exact version of
Algorithm 2 have been implemented in C and are
available for download to facilitate their use for
other problems and to encourage further compar-
ative studies.

The metaheuristic using the single-objective
evolutionary algorithm has been implemented as
an independent module within the PISA [2] frame-
work and is therefore also available as ready-
to-use executables for various operating systems.
Besides the BBV and the knapsack problems, prac-
tically all test functions available from the PISA
website 1 can be used with it. The source code
for the exact version invoking CPLEX as an exam-
ple for an arbitrary single-objective optimization
technique is also available, 2 as well as the data
of the knapsack problem instances. 3
6. Conclusion

We have presented a new metaheuristic scheme
for generating or approximating the Pareto set of
multiobjective optimization problems based on
the well-known epsilon-constraint method. We
have shown that its time complexity, measured
by the number of constrained single-objective
sub-problems to be solved, is O(km�1), where k is
the number of Pareto-optimal solutions to be
found and m is the number of objectives. The
implementation we have provided is compact,
which facilitates its use in practice.

The proposed algorithm has been designed as a
generic framework for different single-objective
optimizers. In case of problems where no efficient
single-objective optimizer is available, one could
use a heuristic or approximative method instead.
This could be especially useful, when a good sin-
gle-objective heuristic is available, but it is not
clear how to extend the heuristic to handle multi-
ple objectives simultaneously. In other cases,
1 http://www.tik.ee.ethz.ch/pisa.
2 http://www.tik.ee.ethz.ch/~laumanns.
3 http://www.tik.ee.ethz.ch/~zitzler/testdata.html.
where true multiobjective metaheuristics are avail-
able, the resulting algorithm would constitute a
baseline algorithm, which can be compared with
other multiobjective metaheuristics. The necessity
for such baseline algorithms has been pointed
out by many researchers in the field.

A further application area of the results of this
paper is the running time analysis of both exact
and heuristic methods for specific problems or
problem instances. It is only necessary to instanti-
ate our algorithm with an appropriate method to
solve the constrained sub-problems and to derive
an upper bound of the running time for this spe-
cific method on the given problem. Thereby, a
problem-specific algorithm is obtained together
with an upper running time bound, which also
can serve as a baseline to judge the efficiency of
other methods.

Finally, a challenging theoretical and thus far
unsolved question is whether it is possible to get
rid of the exponent in the running time bound
and to prove an upper bound which is linear in
the number of desired Pareto-optimal objective
vectors.
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