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Abstract

This paper presents a rigorous running time analysis of evolutionary algorithms on pseudo-Boolean multiobjective optimization problems.

We propose and analyze different population-based algorithms, the simple evolutionary multiobjective optimizer SEMO and two improved

versions, FEMO and GEMO. The analysis is carried out on two bi-objective model problems, LOTZ (Leading Ones Trailing Zeroes) and

COCZ (Count Ones Count Zeroes), as well as on the scalable m-objective versions mLOTZ and mCOCZ. Results on the running time of

the different population-based algorithms and for an alternative approach, a multistart (1+1)-EA based on the ε-constraint method, are

derived. The comparison reveals that for many problems, the simple algorithm SEMO is as efficient as this (1+1)-EA. For some problems,

the improved variants FEMO and GEMO are provably better. For the analysis we propose and apply two general tools, an upper bound

technique based on a decision space partition and a randomized graph search algorithm, which facilitate the analysis considerably.
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I. Introduction

Evolutionary Algorithms (EAs) are probabilistic search techniques that are inspired by models of natural evolution.

The underlying principles are simple, but nevertheless EAs usually exhibit a complex behavior which is hard to analyze

theoretically. Consequently, a lot of empirical knowledge and successful applications have been reported in the literature,

but much less rigorous theoretical results about their efficiency are available. Besides empirical investigations, though,

theoretical work is important for making more general, but also more precise statements about the performance of EA

variants and for better understanding the dynamics of EAs.

A recent overview of the theoretical analysis of EAs is given by Beyer et al. [2]. A major part of this theory is the

running time analysis, which addresses the question of how long a certain algorithm takes to find the optimal solution

for a specific problem or a class of problems. Such an analysis typically contains the following ingredients:

1. Simple, well-defined algorithms, which are simple instances or stochastic models of EAs,
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2. Sample problems (or problem classes), which the algorithms are applied to, and

3. Analytical methods and tools, which are used for the study of the algorithms.

In the case of a single objective and discrete search spaces, several results have been achieved regarding the optimization

of pseudo-Boolean functions. Following first results by Mühlenbein [19] and Rudolph [20], a wide range of such problems

was covered by Droste et al. [6], [7], who successfully applied and considerably extended analytical methods from the

field of randomized algorithms. Modeling the EA as a Markov process, Garnier et al. calculated the distribution of

the first hitting time of the optimum for the CountOnes problem [9] and for long-path problems [8]. He and Yao

derived bounds for the expected running time using drift analysis [13] and exact expressions for the first hitting times

of population-based EAs directly from the transition matrix of the associated Markov chains [14].

In the multiobjective case, only few theoretical results are available. Most of the corresponding studies were concerned

with the limit behavior, i.e., the question whether the search algorithm converges if the number of iterations goes to

infinity [21], [22], [23], [24], [11], [12], [26], [16]. Only recently, Scharnow et al. [25] provided a running time analysis of

a (1+1)-EA on the shortest path problem and showed that a multiobjective formulation of the problem can reduce the

time to find the single optimum considerably.

In [17], we presented the first running time analysis of population-based EAs on a multiobjective problem with

conflicting objectives. Here, we extend these preliminary results with respect to the algorithms, the test problems, and

the analytical techniques. In particular, we

• introduce two pseudo-Boolean model problems, which are scalable in the number of decision variables and number of

objectives;

• define a simple individual-based and a new population-based multiobjective EA;

• propose methods, how population-based EAs can be analyzed in a multiobjective framework; and

• present complexity results in terms of bounds of the expected running time of the different algorithms for the different

problems.

Besides these fundamental contributions, a further motivation for this analysis is to investigate whether the use of a

population is beneficial in solving multiobjective problems: is a population-based EA searching concurrently for all

optimal solutions in a single run more efficient than a multistart of a (1+1)-EA which searches for different optimal

solutions in separate runs?

The paper is organized as follows. In section 2, we construct two multiobjective example problems. In section

3, we introduce and analyze SEMO; SEMO is the first example of a simple, parameterless population-based EA for

multiobjective optimization. The analysis of SEMO reveals a similar performance on the bi-objective problems as a

multistart (1+1)-EA based on the epsilon-constraint method. In this context, we present a theorem that can help

bounding the running time for a general class of elitist population-based EAs on multiobjective problems. In section 4,

we propose two algorithmic improvements, a fair sampling strategy that accelerates the exploration of the optimal set,

and a greedy selection mechanism that leads to a faster progress towards the optimal set. With these two improvements,



implemented in the algorithms FEMO and GEMO, we are able to prove that population-based algorithms can actually

have a lower running time than the (1+1)-EA. In section 5, the obtained results are generalized to higher dimensional

objective spaces: we present and apply a theorem on a general graph search procedure that models the behavior of

the fair sampling algorithms on the set of optimal solutions. Section 6 discusses the changes and difficulties when

independent-bit mutations are used instead of one-bit mutations as considered before in the analysis of the different

algorithms Finally, Section 7 summarizes the results obtained in this paper and discusses how these results can lead to

a more efficient usage of multiobjective EAs for other problem domains.

II. Two Example Problems

The optimization problems considered in this paper are binary decision problems with n variables and m ≥ 2 objec-

tives. All objective functions are to be maximized. As there is no single search point that maximizes all components

simultaneously, the goal is to find a set of so-called Pareto-optimal solutions as defined as follows.

Definition 1 (Pareto optimality)

Let f : X → F where X ⊆ {0, 1}n is called decision space and F ⊆ IRm objective space. The elements of X are called

decision vectors and the elements of F objective vectors. A decision vector x∗ ∈ X is Pareto optimal if there is no other

x ∈ X that dominates x∗. x dominates x∗, denoted as x % x∗, if fi(x) ≥ fi(x∗) for all i = 1, . . . , m and fi(x) > fi(x∗)

for at least one index i. The set of all Pareto optimal decision vectors X∗ is called Pareto set. F ∗ = f(X∗) is the set of

all Pareto optimal objective vectors and denoted as Pareto front.

In this paper, the running time of an algorithm equals the number of necessary evaluations of the objective function

according to the definition below. As the algorithms defined in the following do not have an explicit stopping rule, we

are interested in the running time until all elements of the Pareto front have been identified and are contained in the

internal memory of the algorithm, together with one corresponding Pareto-optimal decision vector each.

Definition 2 (Running Time)

Let an algorithm Af be given which calculates the objective function value f(x) for each decision vector x given as

input. Let P (t), t ∈ IN, denote the population of algorithm A applied to problem f after t calls to Af . Then the random

variable T denoting the running time of A on f is defined as the minimum t such that F ∗ ⊆ f(P (t)).

The first example problem for this analysis is the LOTZ problem. The abbreviation LOTZ stands for “Leading Ones,

Trailing Zeroes” and means that we want to simultaneously maximize the number of consecutive ones at the beginning

and the number of consecutive zeroes at the end of a bit-string. The first component, the LeadingOnes function, has

been analyzed in detail in [20] and [7].

Definition 3

The pseudo-Boolean function LOTZ : {0, 1}n → IN2 is defined as

LOTZ(x1, . . . , xn) =




n∑

i=1

i∏

j=1

xj,
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j=i

(1 − xj)







Fig. 1. Objective space of the LOTZ problem with n = 8

The objective space of LOTZ can be partitioned into n + 1 sets Fi, i = 0, . . . , n (see Fig. 1). The index i corresponds

to the sum of both objective values, i.e. (f1, f2) ∈ Fi if i = f1 + f2. Obviously, Fn represents the Pareto front F ∗. The

sub-domains Xi are defined as the sets containing all decision vectors which are mapped to elements of Fi. They are of

the form 1a0 ∗(n−i−2) 10b with a+ b = i for i < n, and 1a0b with a+ b = n for Xn. The asterisk (*) is used as a wildcard

symbol and indicates that the corresponding bits can be chosen arbitrarily as zero or one.

The cardinality of the Pareto set X∗ = Xn is |Xn| = n + 1 and we also have n + 1 Pareto optimal objective vectors

as |Fn| = n + 1. The next set Fn−1 is empty. For the remaining sets with i = 0, . . . , n − 2 we have |Fi| = i + 1

and |Xi| = |Fi| · 2n−2−i. As a consequence, the decision space X contains 2n different elements, which are mapped to

|Fn| +
∑n−2

i=0 |Fi| = 1/2 · n2 + 1/2 · n + 1 = O(n2) different objective vectors.

The LOTZ problem has a particular feature: all non-Pareto-optimal decision vectors only have one-bit Hamming

neighbors that are either better or worse, but never incomparable to it. This fact facilitates the analysis of the population-

based algorithms, which certainly cannot be expected from other multiobjective optimization problems. Therefore,

we additionally present another simple multiobjective problem where this condition doesn’t hold. This problem is a

multiobjective extension of the CountOnes problem called COCZ (Count Ones Count Zeroes) and is defined below.

The problem consists of two parts: a cooperative part (the first half of the bit-string) and a conflicting part (the second

half of the bit-string). In the cooperative part, the objective is to maximize the number of ones in both functions. In

the conflicting part, the first objective is to maximize the number of ones and the second objective is to maximize the

number of zeroes. The single-objective CountOnes problem has been extensively studied in the literature, see e.g.



Fig. 2. Objective space of the COCZ problem with n = 8

[19], [20], [6], [9].

Definition 4

The pseudo-Boolean function COCZ : {0, 1}n → IN2 is defined as

COCZ(x1, . . . , xn) =




n∑

i=1

xi,

n/2∑

i=1

xi +
n∑

i=n/2+1

(1− xi)





where n = 2 · k and k ∈ IN.

Also for COCZ, a partition of the objective space (see Fig. 2) provides an easy understanding of the problem. We

distinguish n/2 + 1 sets Fi, i = 0, . . . , n/2, where the index i corresponds to the number of ones in the first half of the

bit-string. All Fi contain n/2+1 elements, which distinguish themselves by the number of ones in the second half of the

bit-string. Fn/2 represents the Pareto front F ∗. The cardinality of the Pareto set X∗ = Xn is |Xn| = 2n/2. However,

more Pareto-optimal decision vectors map to objective vectors in the middle of the Pareto front than to its borders:

while
(n/2
n/4

)
decision vectors map to the objective vector (3n/4, 3n/4), the objective vectors (n, n/2) and (n/2, n) only

have one corresponding element in decision space each.

III. A Simple Evolutionary Multiobjective Optimizer

The field of evolutionary multiobjective optimization is characterized by a vast variety of EA variants with specialized

operators of increasing complexity [5], [4]. However, simple algorithms, which can serve as baseline algorithms for

comparisons or theoretical analysis, are missing. The necessity for a baseline algorithm was already noted by [15] and



motivated the invention of the Pareto Archived Evolution Strategy (PAES). The PAES makes use of a complex archiving

and selection logic and is therefore difficult to analyze theoretically. Thus, we propose and analyze a simple baseline

algorithm, SEMO, which can be seen a multiobjective generalization of a (1 + 1)-EA.

A. SEMO

The Simple Evolutionary Multiobjective Optimizer (SEMO) represents the simplest instance of a population-based

EA for multiobjective optimization. SEMO contains a population of variable size that stores all individuals that are

not dominated by any other individual found so far. At the beginning, the population is initialized with a single

element, which is drawn at random from the decision space. In each iteration, one parent individual x is drawn from

this population uniformly at random and mutated. The child x′ is added to the population if it is not dominated by

any population member and if its objective vector is not already contained in the population. All individuals that are

dominated by the child are in turn deleted from the population.

Unless stated otherwise, the mutation operator considered for all algorithms in this paper is the so-called one-bit

mutation. A new decision vector is produced by choosing a random position j ∈ {1, . . . , n} and replacing the value xj

by 1− xj . All other decision variables remain unchanged.

Algorithm 1 Simple Evolutionary Multiobjective Optimizer (SEMO)
1: Choose an initial individual x uniformly from X

2: P ← {x}

3: loop

4: Select one element x out of P uniformly.

5: Create offspring x′ by mutation of x.

6: if ) ∃z ∈ P such that (z % x′ ∨ f(z) = f(x′)) then

7: P ← (P \ {z ∈ P |x′ % z}) ∪ {x′}

8: end if

9: end loop

B. Analysis of SEMO on LOTZ

We start our analysis with the SEMO algorithm applied to the LOTZ problem. A run of the SEMO on LOTZ can be

divided into two distinct phases: the first phase lasts until the first Pareto-optimal individual has entered the population,

and the second phase ends when the whole Pareto set has been found.

Lemma 1

The expected running time of Algorithm 1 to find the first Pareto-optimal point of LOTZ is O(n2).

Proof. During this first phase, the population consists of one individual only, as a mutation changing the objective

values yields either a dominating or a dominated individual. Hence, if an offspring is accepted, it will replace the parent



from which it was produced. We consider the partition of the search space into distinct subsets Xi as defined above and

note that from any subset Xi only points in Xj , j > i are accepted. As there is always a one-bit mutation leading to

the next subset, the probability of improvement is at least 1/n. As there are at most n− 1 such steps necessary (Xn−1

is empty) the expected time is at most n2.

Lemma 2

After the first Pareto-optimal point is found, the expected running time of Alg. 1 until all Pareto-optimal points are

found is Θ(n3), and the probability that the running time is less than n3/c(n) is less than (8e/c(n))n/2.

Proof. We partition this phase into n different sub-phases. Sub-phase i lasts from the time when i Pareto-optimal

solutions have been found to the time when the next solution is found. Ti is a random variable denoting the duration

of sub-phase i and the random variable T is the sum of these times. As we always have a contiguous subset of the

Pareto set, only the individuals corresponding to the outer points of this subset can create a new Pareto-optimal

point. The probability ps(i) to sample such a candidate in phase i is at least 1/i and at most 2/i. A subsequent

mutation has a success probability of at least 1/n and at most 2/n. Hence, ni/4 ≤ E(Ti) ≤ ni. As T =
∑n

i=1 Ti,

1/8n3 + 1/8n2 ≤ E(T ) ≤ 1/2n3 + 1/2n2.

To derive a lower bound of the running time which holds with a high probability we consider the run after n/2

Pareto-optimal solutions have already been found. In this case the probability to find a new Pareto-optimal solution

is at most 4/n2. If we allow n3/c(n) trials, the expected number of successes, S, is at most 4n/c(n). With Chernoff’s

inequality, the probability that we reach the required n/2 + 1 successes to find the remaining solutions can be bounded

as

Prob{S > n/2} ≤
(

e 1
8 c(n)−1

(1
8c(n)) 1

8 c(n)

)4n/c(n)

≤
(

8e
c(n)

) 1
2n

(1)

From the concatenation of the two phases the following theorem can be derived.

Theorem 1

The expected running time of SEMO applied to LOTZ is Θ(n3).

C. Analysis of SEMO on COCZ and a General Upper Bound Technique

The analysis of SEMO on the LOTZ problem has been facilitated by the observation that the population does not

contain more than one individual until the Pareto set is reached. In this respect, the COCZ is a more realistic problem,

because the population will certainly start growing before the Pareto set is reached. Unfortunately, this population

growth is hard to analyze in detail and therefore hard to bound. In the worst case, the population might extend over

the whole objective space and moves forward with a broad front of solutions. We can, however, derive the following

general upper bound for this worst-case scenario, which holds not only for SEMO, but for a more general class of

population-based approaches under the assumption of an elitist selection strategy. The idea behind this lemma is that it

is sufficient for each decision vector to be mutated once into a dominating decision vector. The elitist selection strategy



then guarantees that this decision vector will be discarded from the population for ever. The result is independent of

sampling strategy used and depends only on the properties of the variation and replacement selection operator, which

can be formalized as follows.

Lemma 3 (General upper bound I)

Let an algorithm be given that iteratively modifies a population P by a sequence of variation and selection operations

with the properties

(1) For each y ∈ F \ F ∗, the probability that the variation operator applied to any x ∈ X with f(x) = y produces a

dominating decision vector x′ with x′ % x is bounded below by p(y) > 0

(2) A newly generated decision vector will enter the population P only if it is not dominated by any other element of

P .

(3) A decision vector is deleted from the population P if and only if a dominating decision vector is included into the

population.

Then the expected number of times the variation operator is applied to non-Pareto optimal decision vectors is bounded

above by
∑

y∈F\F∗ p(y)−1.

Proof. Consider any objective vector y′ ∈ F \ F ∗ and the corresponding set of decision vectors X ′ := f−1(y) = {x ∈

X |f(x) = y}. An element of X ′ can only undergo variation, if it is present in the population P . Let T (X ′) denote

the total number of times that elements from X ′ undergo variation until for the first time an x′′ is generated with

f(x′′) % y′. Clearly, x′′ will enter P and cause all elements of x′ ∈ X ′ being deleted due to property (3). With property

(2), this will further mean that no element of X ′ will ever be accepted again in the population, hence no elements of X ′

will be subject to variation anymore. As the random variables T (X ′) are independent it follows with property (1) that

E(T (X ′)) ≤ p(y)−1. The summation over all y′ ∈ F \ F ∗ leads to the claimed expression.

In many cases, the summation over all elements in F \ F ∗ is impractical because its cardinality is too large. We can,

however, also work with larger groups of decision vectors such that a smaller number of groups has to be accounted

for. The following lemma is an extension of the previous one for arbitrary partitions of the decision space. It is similar

to the fitness level technique [27] of single-objective problems and can be seen as a generalization of this technique for

partially ordered objective spaces.

Lemma 4 (General upper bound II)

Let the dominated part of the decision space, X \ X∗ be partitioned into k sets X1, . . . , Xk with
⋃

1≤i≤k Xi = X \ X∗

and Xi ∩Xj = ∅ for all i, j. Let the dominance relation on sets be defined as

Xi % Xj ⇔ ∀(a, b) ∈ Xi ×Xj : a % b.

The sets d(Xi) := {Xj : Xj % Xi} contain all sets Xj that dominate set Xi. If the algorithm fulfills the same properties

as in Lemma 3, and if p(Xi) is a lower bound for the probability that a variation applied to an individual x ∈ Xi

produces an individual x′ in a dominating decision space subset, i.e., 0 < p(Xi) ≤ minx∈Xi{Prob{x′ ∈ d(Xi)|x ∈ Xi}}



then the expected number of times the variation operator is applied to non-Pareto optimal decision vectors is bounded

above by
∑k

i=1 p(Xi)−1.

The proof can be done as for the previous lemma. With the help of this lemma it is now possible to prove upper

bounds for different problems, given that an appropriate decision space partition and expressions for the improvement

probabilities p(·) can be derived. We demonstrate its use by deriving an upper bound for the expected running time of

the SEMO algorithm on the COCZ problem.

Theorem 2

The expected running time of SEMO applied to COCZ is bounded by O(n2 log n).

Proof. We divide the total number of objective function evaluation into those that are required for mutants of non-

Pareto-optimal parents and those for mutants of Pareto-optimal parents. Let the parents that are not Pareto-optimal

be divided into group Xi,j := {x ∈ X |f(x) = (n/2 − i + j, n − i − j)}, i, j ∈ {0, . . . , n/2}, where the i refers to the

Hamming distance from the Pareto set and j to the number of ones in the second half of the bit-sting. It is obvious that

the Xi,j constitute a search space partition according to Lemma 4 and that the SEMO also fulfills the elitist selection

conditions P1 and P2. As a result, the total number of mutations of non-Pareto-optimal search points can be bounded

by
∑n/2

j=0

∑n/2
i=1 n/i = O(n2 log n).

Let k be the number of ones of the first Pareto-optimal point found. Now consider a modified SEMO that starts with

this point and never accepts any non-Pareto-optimal points (their contribution to the running time has already been

bounded) and never accepts any points with more than k ones. The expected time of this algorithm until the remaining

Pareto-optimal points have been found is
∑k−1

i=0 n(k − i)/i = Θ(nk log k). For an upper bound, consider the negative

assumption that SEMO has to traverse the whole chain starting from k = n/2 twice, to move to both ends of the Pareto

front. In every case, the claimed bound of O(n2 log n) holds.

D. Comparing SEMO to a (1+1)-EA using Multistarts

An alternative approach to find a set of Pareto-optimal solutions is the so-called scalarizing approach [18]. The

different objective functions are aggregated to form a single-objective surrogate problem, on which a single-objective

optimizer can be applied. This scalarization involves parameters to be set that balance the relative importance of the

different objectives. The working principle of this approach is to use multiple runs of the single-objective optimizer with

different parameter settings such that a different Pareto-optimal solution is found in each run. It is an open problem

where this approach is more efficient compared to a population-based algorithm that is able to search for the whole

Pareto front in a single run.

In this study, we want to address this question by a theoretical analysis of the different approaches. As a representative

for the single-objective multistart class, we use the ε-constraint method [10]. The ε-constraint method works by choosing

one objective function as the only objective and the remaining objective functions as constraints. By a systematic

variation of the constraint bounds, different elements of the Pareto front can be obtained [3, p. 285] by solving the



constrained single-objective problems

maximize f1 (2)

subject to fi ≥ εi ∀2 ≤ i ≤ m, i ∈ IN. (3)

The (1+1)-EA therefore needs a set of different εi values to be specified. F or the following analysis we optimistically

assume a best-case scenario, where

• The coordinates of all Pareto-optimal objective vectors f∗1, f∗2, . . . , f∗|F∗| are known.

• The single-objective (1+1)-EA, Alg. 2, is run for each of those f∗k, 1 ≤ k ≤ |F ∗|, using the constraint bounds εi = f∗k
i .

• Each of the |F ∗| runs of the (1+1)-EA is independently executed until the optimum is found.

Using information about the optimum might appear unfair, but we are mainly interested in lower bounds for the

multistart (1+1)-EA. It is obvious that a realistic variant cannot be better than this one as it has to make at least

one run for each Pareto-optimal objective vector to be found, plus a number of runs that are redundant because of a

non-optimal choice of the εi values.

Algorithm 2 Single-objective (1+1)-EA
1: Choose an initial individual x uniformly from X

2: loop

3: Create offspring x′ by mutation of x.

4: g(x)←
∑

fi≤εi,2≤i≤m(εi − fi(x)) {constraint violation by x}

5: g(x′)←
∑

fi≤εi,2≤i≤m(εi − fi(x′)) {constraint violation by x′}

6: if g(x′) < g(x) ∨ (g(x′) = g(x) = 0 ∧ f1(x′) > f1(x)) then

7: x← x′

8: end if

9: end loop

The multistart (1+1)-EA proceeds by first minimizing the constraint violation given by the objectives two to m and

the different thresholds εi. After the constraints are satisfied, the algorithm turns to optimize the first objective while

keeping all other objective values above the constraint boundaries. We give an exact expression for the expected running

time of the (1+1)-EMO for the LOTZ and upper and lower bounds for the COCZ problem, the proof is given in the

appendix.

Theorem 3

The expected running time of the multistart (1+1)-EA is 1
2 (n3 + n2) for LOTZ and Θ(n2 log n) for COCZ.

It follows that running time of the simple population-based optimizer SEMO for both the LOTZ and the COCZ

problem is of the same order as the multistart (1+1)-EA in its assumed base-case scenario. In the next section, we

investigate whether a population-based approach can be provably better than this (1+1)-EA.



IV. Two Improved Evolutionary Multiobjective Optimizers

Obviously, SEMO is not advantageous to the (1+1)-EA using an ε-constraint method regarding the LOTZ and the

COCZ problem. In this section, we propose two modifications of the SEMO algorithm, a fair sampling strategy and a

greedy selection mechanism. With the fair sampling strategy, the FEMO (Fair Evolutionary Multiobjective Optimizer)

can solve the LOTZ problem quicker. Using in addition a greedy selection mechanism, the GEMO (Greedy Evolutionary

Multiobjective Optimizer) is also quicker on the COCZ problem.

A. The FEMO and the Fair Sampling Strategy

The main weakness of the SEMO on the LOTZ problem lies in the fact that a large number of mutations is allocated to

parents whose neighborhood has already been explored sufficiently. On the other hand, an optimal sampling algorithm

would always use the most promising parent at the border of the current population, leading to a running time of Θ(n2).

Of course, this information is not available in a black box optimization scenario.

The uniform sampling leads to a situation, where the Pareto-optimal individuals have been sampled unevenly depend-

ing on when each individual entered the population. The fair sampling strategy implemented by FEMO guarantees

that at the end all individuals receive about the same number of samples.

The FEMO (see Alg. 3) implements a fair selection strategy by counting the number of offspring each individual

produces (line 6). The sampling procedure deterministically chooses the individual which has produced the least number

of offspring so far, ties are broken randomly (line 5).

Algorithm 3 Fair Evolutionary Multiobjective Optimizer (FEMO)
1: Choose an initial individual x uniformly from X

2: w(x)← 0 {Initialize offspring count}

3: P ← {x}

4: loop

5: Select one element x out of {y ∈ P |w(y) ≤ w(z) ∀z ∈ P} uniformly.

6: w(x)← w(x) + 1 {Increment offspring count}

7: Create offspring x′ by mutation of x.

8: if ) ∃z ∈ P such that (z % x′ ∨ f(z) = f(x′)) then

9: P ← (P \ {z ∈ P |x′ % z}) ∪ {x′}

10: w(x′)← 0 {Initialize offspring count}

11: end if

12: end loop

For the analysis of the FEMO on LOTZ we note that the first phase is identical to the SEMO described before. With

the following theorem we prove that the total running time of FEMO on LOTZ is bounded by Θ(n2 log n).



Theorem 4

With probability at least 1−O(1/n), the running time FEMO needs from the discovery of the first two Pareto-optimal

objective vectors of LOTZ until the whole Pareto set has been found lies in the interval [1/4n2 log n, 2n2 log n]. Hence,

Prob{T = Θ(n2 log n)} = 1−O(1/n). Furthermore, E(T ) = O(n2 log n).

The proof of this theorem is given in the appendix. The idea is to bound the number of times each element that

enters P in the second phase will be mutated. Once the first Pareto-optimal point is found, there is exactly one possible

parent for each of the remaining n points. We are interested in the number of mutations that must be allocated to

each of these n parents in order to have at least one successful mutation that leads to the desired child. Lemma 7 and

8 provide upper and lower bounds on the probability that a certain number of mutations per parent are sufficient. In

Theorem 4 these probabilities are used to bound the running time of the FEMO algorithm.

As discussed earlier, the COCZ problem leads to a possible growth of the population before the Pareto set is found,

for the SEMO as well as for the FEMO. This makes it a difficult challenge to derive tight upper and lower bounds for

the FEMO on COCZ. Nevertheless, Lemma 4 and the same argumentation as with the SEMO leads to a O(n2 log n)

upper bound. For the lower bound it is sufficient to note that in order to find the last Pareto-optimal objective vector

there is only one bit that must flip, the chance of which is 1/n. Due to the fair sampling strategy, FEMO will therefore

allocate an expected number of Ω(n) mutation trials for all n/2 other Pareto-optimal members of the population. In

summary:

Theorem 5

The expected running time of FEMO applied to COCZ is bounded above by O(n2 log n) and below by Ω(n2)

In the next section we propose a further improvement of the algorithm, which avoids the population growth as much

as possible.

B. The GEMO and the Greedy Selection Mechanism

The Greedy Evolutionary Multiobjective Optimizer (GEMO) is an extension of the FEMO in order to achieve maxi-

mum progress towards the Pareto front. The main idea is to allocate all search effort to offspring of the most recently

successful mutant, which is implemented as follows.

As long as only mutually non-dominating individuals are found, the algorithm acts like FEMO, in order to spread

out the population, and hence the search effort, fairly and equally. However, when further progress towards the Pareto

front is achieved (realized by the fact that a new individual is found that dominates elements of the current population),

all other remaining population members are disabled. This means that they cannot produce any offspring and is

implemented by setting their weight to infinity (line 18). When GEMO finally reaches the Pareto front and no further

progress is possible, it will again behave like FEMO. Here, it is necessary to re-enable all re-discovered individuals (line

11), otherwise these individuals would constitute barriers in the objective space that are difficult or, depending on the

mutation distribution, impossible to cross.



Algorithm 4 Greedy Evolutionary Multiobjective Optimizer (GEMO)
1: Choose an initial individual x uniformly from X

2: w(x)← 0 {Initialize offspring count}

3: P ← {x}

4: loop

5: Select one element x out of {y ∈ P |w(y) ≤ w(z) ∀z ∈ P} uniformly.

6: w(x)← w(x) + 1 {Increment offspring count}

7: Create offspring x′ by mutation of x.

8: if ) ∃z ∈ P such that z % x′ then

9: if ∃z ∈ P such that f(z) = f(x′) then

10: if w(z) =∞ then

11: w(z)← 0 {Reset offspring count}

12: end if

13: else

14: D ← {z ∈ P |x′ % z} {Determine individuals dominated by x′}

15: if D )= ∅ then

16: P ← P \ D {Delete dominated individuals}

17: for all y ∈ P do

18: w(y)←∞ {Disable remaining individuals}

19: end for

20: end if

21: P ← P ∪ {x′} {Add x′ to population}

22: w(x)← 0 {Initialize offspring count}

23: end if

24: end if

25: end loop

On LOTZ, the GEMO behaves identically to the FEMO due to the special characteristics of the this problem. On

the COCZ problem, the new features of the GEMO algorithm allow us to prove a tight bound of the expected running

time.

Theorem 6

The expected running time of GEMO applied to COCZ is bounded by Θ(n2).

The proof, which is given in the appendix, is again split into the two phases. The understanding is that the new greedy

selection of the last improved individual reduces the time needed on the way towards the Pareto front considerably.



Fig. 3. Schematic view of the mLOTZ problem

V. Higher-dimensional Objective Spaces

In this section, we generalize the two bi-objective problems from the previous sections, LOTZ and COCZ, to arbitrary

objective space dimensions. Bounds for the expected running time for the different algorithms are derived for each

problem, where the problem size is again determined by the number of decision variables n, while the number of

objectives m is considered as a constant. To facilitate the analysis of the fair sampling strategy of the GEMO, we derive

a general result on a graph searching process, which serves as a model how GEMO behaves on the Pareto front.

A. The Multiobjective Leading Ones (mLOTZ) Problem

The LOTZ problem can be generalized to an arbitrary even number of objectives m by concatenating m/2 bi-objective

LOTZ problems of 2n/m bits each.

Definition 5

The pseudo-Boolean function mLOTZ : {0, 1}n → INm is defined as

mLOTZ(x1, . . . , xn) = (f1, f2, . . . , fm)

with

fk =






∑n′

i=1

∏i
j=1 xj+n′(k−1)/2 if k is odd

∑n′

i=1

∏n′

j=i(1 − xj+n′(k−2)/2) else.

where m = 2 · m′, m′ ∈ IN and n = m′ · n′, n′ ∈ IN.

The construction principle of the mLOTZ problem is depicted in Fig. 3. To solve mLOTZ, we are searching for a

representation of the Pareto front with |F ∗| = (2n/m + 1)m/2 elements.

Theorem 7

The expected running time of the multistart (1+1)-EA applied to mLOTZ is bounded by Θ(nm/2n2).

Proof. For each of the |F ∗| Pareto-optimal points, we have to find a unique bit-string. For each mutation, there are

at least one and at most m bits that can flip for a success. In addition, a bit is set correctly with probability 1/2 even

without mutation, so half of the steps are for free. Hence, the expected running time for each constrained sub-problem

is Θ(n2), and with the number of |F ∗| = (2n/m + 1)m/2 sub-problems to be solved the claim follows.



To derive an upper bound for SEMO, we can again make use of the general upper bound of Lemma 4.

Theorem 8

The expected running time of SEMO and FEMO applied to mLOTZ is bounded by O(nm+1).

Proof. We have O((n/m)m) different objective vectors. Each of the dominated vectors receives on average O(n)

mutations until it is improved and deleted forever. The discovery of the last Pareto-optimal vector takes O(n/m)m/2 ·n

time, which is an upper bound for the discovery of all Pareto-optimal vectors.

For the analysis of the GEMO we again note that the running time is mainly determined by the exploration of the

Pareto front. In the general case, the Pareto front can be modeled as a graph, where the nodes correspond to the

different Pareto-optimal objective vectors and the directed weighted edges correspond to mutation probabilities. Instead

of analyzing GEMO directly, we first define and analyze a more general randomized graph search algorithm, which

is similar to a process described and analyzed in [1]. The purpose of this approach is two-fold. First, it gives a more

intuitive view of how the different population-based algorithms behave on the Pareto front. Second, it provides a general

tool, like the upper bound technique of Lemma 4, which facilitates and shortens the analysis of different real algorithms.

The algorithm assumes that we are given a random starting node v1 and a randomized operator jump : V 5→ V, which

returns for each node v a neighbor v′ of v with probability w(v, v′). The purpose of the following algorithm is to

determine V and E using a minimal number of calls to jump.

Algorithm 5 Randomized Graph Search
1: w(v1)← 0

2: V ← {v1}; E ← {}

3: loop

4: Select a node v′ out of {v′ ∈ V |w(v′) ≤ w(v) ∀v ∈ V } uniformly.

5: w(v′)← w(v′) + 1

6: v′′ ← jump(v′)

7: if v′′ )∈ V then

8: w(v′′)← 0

9: V ← V ∪ {v′′}; E ← E ∪ {(v′, v′′)}

10: end if

11: end loop

It will be shown that the above algorithm explores a graph G using O( |V |
p log |E|) calls to the function jump with high

probability, where p is a lower bound on the edge weights. The first lemma bounds the weight of a node during a run

of the algorithm.

Lemma 5

With probability at most ∆ · e−λ, the weight of a node with ∆ neighbors exceeds λ
p before all neighbors of the node are

found.



Proof. Starting from w(v) = 0, the weight increases by 1 after each trial. Let us suppose that the neighbors of v are

{v1, ..., v∆}. The weight exceeds λ
p if it exceeds this value before neighbor v1 is found or before neighbor v2 is found or

... Using Boole’s inequality, we can bound the probability P we are looking for, according to

P ≤
∆∑

k=1

Pk = ∆ · P1

where Pk denotes the probability that neighbor vk has not been found yet and w(v) exceeds λ
p . Now we have

P1 = (1 − p)
λ
p ≤ e−λ P ≤ ∆ · e−λ

Lemma 6

With probability at most |E| · e−λ, the weight of some node exceeds λ
p before all nodes and edges are found.

Proof. There are at most |V | nodes that have to find their neighbors each. The events that the weight of a node

exceeds λ
p are independent for all nodes. Using the number of neighbors ∆i of node vi, we find the probability

i=|V |∑

i=1

∆i · e−λ = |E| · e−λ

Now, we can bound the total running time of the exploration algorithm.

Theorem 9

With probability at least 1− 1
|E|c , the above algorithm explores all nodes and edges of G after (c + 1) |V |

p ln |E| calls to

the function jump. The expected number of calls to jump is bounded by O( |V |
p log |E|).

Proof. With λ = (c + 1) ln |E| and Lemma 6 we find that with probability 1− 1
|E|c , the maximal weight of the nodes

in V does not exceed (c+1)
p ln |E| at the time when the whole graph has been explored. Therefore, the function jump has

been called at most |V | (c+1)
p ln |E| times. For the expectation, let the random variable T ′ denote the number of calls to

jump, divided by |V |
p ln |E|. With

E(T ′) ≤ 1 · Prob{0 ≤ T′ < 1} + 2 · Prob{1 ≤ T′ < 2} + . . .

≤ 3 +
∞∑

c=3

c · Prob{T′ ≥ c− 1}

≤ 3 +
∞∑

c=1

(c + 2)|E|−c

≤ 3 +
|E|

(|E|− 1)2
+

2
|E|− 1

= O(1)

the bound on the expected number of calls to jump follows.



Fig. 4. Schematic view of the mCOCZ problem

Theorem 10

The running time of GEMO applied to mLOTZ is bounded by O(nm/2 · n log n) with probability at least 1 −O(n−m).

The expected running time is bounded by O(nm/2n log n).

Proof. Let us again consider two phases depending on whether a Pareto-optimal point has been found so far. In the

first phase, there are two types of mutations that lead to accepting new points: successful mutations and indifferent

mutations. Successful mutations cause the active population to shrink to one element x and increase the objective sum

s =
∑m

i=1 fi(x) by one. Indifferent mutations can cause the population to grow, but keep s constant. Therefore, at most

n successful mutations are needed in the first phase. Since the probability of a successful mutation is always at least

1/n, the expected running time of the first phase is O(n2). At the end of the first phase, P contains exactly one element

of the Pareto set, and we can describe the behavior in phase 2 by the model of Alg. 5. In this case, |V | = (2n/m+1)m/2,

|E| ≤ m|V |, and p = 1/n. Application of Theorem 9 leads to the claimed bounds.

B. The Multiobjective Count Ones Problem (mCOCZ) Problem

The idea of the mCOCZ is again a concatenation of multiple bi-objective COCZ problems. However, the bits shall

be re-arranged so that the first n/2 bits represent the cooperative part, where the number of ones contributes equally

to all objectives. The remaining parts represent the mutual tradeoffs between pairs of objectives.

Definition 6

The pseudo-Boolean function mCOCZ : {0, 1}n → INm is defined as

mCOCZ(x1, . . . , xn) = (f1, f2, . . . , fm)

with

fj =
n/2∑

i=1

xi +






∑n′

i=1 xi+n/2+(j−1)n′/2 if j is odd

∑n′

i=1(1 − xi+n/2+(j−2)n′/2) else.

where m = 2 · m′, m′ ∈ IN and n = m · n′, n′ ∈ IN.



This gives rise to a Pareto front with |F ∗| = (n/m + 1)m/2 different elements. The construction principle of the

mCOCZ problem is depicted in Fig. 4.

Theorem 11

For the mCOCZ problem, the following bounds for the expected running times hold:

• Θ(nm/2n logn) for the multistart (1+1)-EA

• O(nm+1) for SEMO and FEMO

• O(nm/2n logn) for GEMO.

The proof of Theorem 11 is given in the appendix.

VI. From One-bit to Independent-bit Mutations

Thus far, all algorithms in this paper have been considered with one-bit mutations only, as this simplifies the analysis.

The disadvantage is that the one-bit mutation operator is less relevant in practise, because it is a local operator, and

will fail on problems where jumps of more than one bit are required to proceed the search.

In this section we discuss the use of the independent-bit mutation operator, i.e., in a mutation step each bit is flipped

independently with probability 1/n. We claim that upper bounds derived by the general technique of Lemma 4 also

hold in the case of independent-bit mutations. Our argumentation relies mainly on the success probabilities. We can

simply disregard all mutations where not exactly one bit flips. The expected waiting time from one one-bit mutation

to the next is (1 − 1/n)−(n−1) = O(e), which doesn’t change the order of the total expected running time. Lemma 4

then assures us that we can work with the success probabilities alone and completely ignore those mutations, where not

exactly one bit flips.

The situation is different when we try to verify tighter bounds, for example for FEMO on the LOTZ problem. Here,

the independent-bit mutations can produce incomparable individuals and hence cause the population to grow before it

reaches the Pareto set. This problem is somehow similar to the one encountered in the analysis of FEMO on COCZ

with the one-bit mutations, and it is a so far unsolved challenge to prove tight bounds for both cases.

The effect of mutations that flip more than one bit has to be taken into account also for the GEMO algorithm. Here,

we are faced with the following type of negative event that might enlarge the running time: Offspring can be accepted

into the population with a larger Hamming distance from the Pareto set than their parent. If this offspring then happens

to be the first in the population to produce a dominating child, then the minimum Hamming distance of the active part

of the population can increase. It is therefore necessary to bound the negative effect of this event.

Altogether it can be stated that bounds for the case of independent-bit mutations can be derived for all scenarios

considered in this paper, but that it remains open whether these bounds are tight.



(1+1)-EMO SEMO FEMO GEMO

LOTZ Θ(n3) Θ(n3) Θ(n2 log n) Θ(n2 log n)

COCZ Θ(n2 log n) O(n2 log n) O(n2 log n) Θ(n2)

mLOTZ Θ(nm/2n2) O(nm+1) O(nm+1) O(nm/2n logn)

mCOCZ Θ(nm/2n log n) O(nm+1) O(nm+1) O(nm/2n logn)

TABLE I

Bounds on the expected running time derived in this paper.

VII. Summary and Discussion

In this paper, running time results were derived for different types of evolutionary algorithms on different pseudo-

Boolean multiobjective optimization problems. To this end, we proposed and analyzed various population-based multi-

objective EAs:

• The simple population-based algorithm SEMO, and

• Two improved population-based algorithms, FEMO and GEMO

and compared their running time against a multistart (1+1)-EA based on the ε-constraint method. To facilitate the

analysis of population-based EA, we derived two analytical tools,

• A general upper bound technique based on a partition of the decision space and

• A general randomized graph search algorithm.

While the former can be used to bound the search effort in non-Pareto optimal regions, the latter helps to analyze the

time spent for the exploration of the Pareto front itself.

In addition, we defined two model problems, mLOTZ and mCOCZ, which are composed of unimodal pseudo-Boolean

functions and which are scalable in the number of objectives m.

The bounds on the expected running times are summarized in Table I. It was shown that on the bi-objective problems,

the SEMO needs a running time of the same order as the (1+1)-EA, while it loses its competitiveness with increasing

number of objectives. This is mainly due to SEMO’s poor ability to expand the population on the Pareto set. The

GEMO on the other hand has the lowest running time on all problems, except for the mCOCZ for m > 2, where an

upper bound of the same order as for the (1+1)-EA could be given, but which is not necessarily a tight bound.

To derive tight bounds for the expected running time it is necessary to give lower and upper bounds of the same

growth rate. For some of the analyzed cases, the upper bound might be too pessimistic such that it is not possible to

prove a matching lower bound. One possible approach to this problem is to bound the population-size during the run

of the algorithm. However, to be able to store the whole Pareto front, a large enough population size must be allowed,

implying that in the worst case all possible objective vectors will be visited. If it is not possible to bound the size of the

population on its way towards the Pareto set, only the general upper bound of Lemma 4 holds, and the running time



advantage of the population-based EAs compared to the (1+1)-EA vanishes in most cases.

Another possibility is to circumvent this problem through the design of the algorithm, which is one motivation of

the GEMO algorithm. The strategy of the GEMO to focus the search effort on the most recently successful offspring

counteracts the tendency of the population to increase, as long as successful mutations are possible. It can therefore be

viewed as an algorithm that implicitly notices when the Pareto front is reached and automatically adapts its behavior.

The rationale behind the GEMO strategy is that we first want to find the Pareto set on the straightest way possible

and only thereafter to spread out the population as quick as possible. This way, the GEMO represents the opposite

of the (1+1)-EA, which searches in all different directions from the start, while the behavior of the FEMO and the

SEMO is somehow in between these two extremes. There certainly exist multiobjective problems where it is not easy

to traverse the Pareto set, e.g. if its elements are at a large Hamming distance from each other. In such a case it might

be necessary to spread out the population early in the search in order to make all Pareto-optimal points reachable.

Clearly, the GEMO strategy would be wrong here, because it was designed to prevent exactly this. Nevertheless, it can

be argued that such a scenario is anyway the domain of scalarizing approaches like the multistart (1+1)-EA presented

in this paper, and that any approach with a population would be less efficient.

VIII. Conclusion

We have shown, for two types of problems, that specific population-based multiobjective optimizers have a provable

lower running time than a specific traditional scalarizing method using multistarts of single-objective optimizers. To

date, it has often been claimed, but never shown, that the use of a population can be beneficial in the context of

multiobjective optimization, even without the use of recombination. The results presented in this paper are the first

theoretical evidence for this claim. Instead of the explicit co-operation using traditional recombination operators, implicit

cooperation via measuring of success in the population is used here.

The availability of appropriate methods and tools has shown to be crucial for the analysis. The general upper bound

technique presented in this paper, for instance, allowed us to derive upper bounds for a number of different scenarios

and to shorten the proofs considerably. One of the many challenging problems in this area is to derive tight bounds for

the cases where the population of the multiobjective EA spreads out before the Pareto set is reached.

The theoretical analysis led to the definition of two new selection schemes that so far have not been used in standard

MOEAs. The results suggest that their use might be beneficial also in practical applications, which is an interesting

area of future research.

Appendix

Proof of Theorem 3. As the Pareto front of the LOTZ problem contains n + 1 different elements, the algorithm has

to solve n + 1 sub-problems with different constraint values. Let Ti, 0 ≤ i ≤ n, denote the running time to solve the i-th

sub-problem whose optimum is given by the point with n− i leading ones and i trailing zeroes. Each sub-problem can

be further divided into n consecutive sub-phases, the first i of which correspond to finding the trailing zeroes starting



from the back and the following n − i by finding the leading ones starting from the front. At the beginning of each

sub-phase, the bit under concern is with equal probability 0 or 1. If the bit is already set correctly, this sub-phase has

length 0, otherwise it follows a geometric distribution with parameter (n − 1)/n. Hence, the lengths of all sub-phases

are independent and identically distributed with expectation n/2. Therefore,

E(T ) =
n∑

i=0

E(Ti) = (n + 1)
n2

2
=

1
2
(n3 + n2)

holds for the LOTZ problem. For the COCZ problem, the Pareto front contains n/2 + 1 different elements, therefore

the algorithm has to solve n/2 + 1 sub-problems with different constraint values. In each of the runs, a bit-sting has to

be produced where the first n/2 bits, the cooperative section, are ones. We call this the end of phase 1. Its expected

time is Θ(n log n) as it is equivalent to solving the CountOnes problem with n/2 bits [6] and taking into account that

on average every second mutation will be realized in the first n/2 bits. For the upper bound, we also have to consider

the second phase. In the worst case, at the end of the first phase the first n/2 bits are set to one and the rest can be

any string. Now there are two alternatives. If the constraint is not satisfied, then some of the ones must be mutated to

zero. If the constraint is already satisfied, then it might be possible to turn some of the zeroes into ones. In both cases,

there are at most n/2 such candidate bits, which can flip at a random order, and the expected waiting time for this

event is again bounded by O(n log n). Thus, the expected time for solving one sub-problem is Θ(n logn), and n/2 + 1

such problems to solve give a total expected running time of Θ(n2 log n). !

Lemma 7

Let the population P of FEMO applied to LOTZ contain exactly one Pareto-optimal solution and let c > 0 be an

arbitrary constant. With probability at least 1−n1−c, it takes at most c ·n lnn mutation trials per solution to generate

all remaining n Pareto-optimal solutions.

Proof. For each individual, the probability that its parent did not generate it within its first c · n ln n mutations is

bounded by

(1− 1/n)c·n ln n = (1− 1/n)nc ln n ≤
(

1
e

)c ln n

=
1
nc

There are n individuals that must be produced with the given number of trials. These events are independent, so the

probability that at least one individual needs more than cn ln n trials is bounded above by n1−c.

Lemma 8

Let k ∈ {1, . . . , n}, a = k/n, and c > 0 be an arbitrary constant. The probability that k = a ·n individuals are produced

in c · n ln n mutation steps each is not larger than (ea)−n(1−c−c/n)
.

Proof. The probability that a parent has created a certain offspring within the first t = c · n lnn mutations is

1− (1− 1/n)t. The probability that this happens independently for a selection of k such parent-offspring combinations

can thus be bounded as

(1 − (1− 1/n)t)k ≤
(

1− 1
nc n+1

n

)an

≤ e
− an

nc(n+1)/n = (ea)−n(1−c−c/n)



Proof of Theorem 4. Let the Pareto-optimal points be indexed according to the order in which they have entered the

set P . Let k ∈ {0, . . . , n} be the index of the individual that required the largest number of mutations to be produced.

We apply Lemma 7 with c = 2 and notice that this individual k did not need more than 2n lnn trials with probability

1−O(1/n).

What remains to be shown for the upper bound is that no node will be sampled more than t times during the algorithm.

This can be guaranteed since there is always a candidate x ∈ P with w(x) ≤ t (the element that has most recently

been added to P ). Hence, any element whose weight has reached t will never be sampled again. As there are n such

elements, each of which is sampled at most t times, the total number of samples (steps) the algorithm takes does not

exceed T = n · t = 2n2 log n with probability 1−O(1/n).

For the lower bound, we apply Lemma 8 with c = 1/2 and k = n/2. With a probability of 1−
√

e
−n(0.5−0.5/n)

, there is

an individual in the second half which needs at least 1/2 ·n · ln n trials. Hence, all individuals in the first half have been

sampled at least 1/2 ·n · ln n− 1 times each. Of course, all individuals in the second half must be sampled at least once.

The summation over all nodes gives a total number of samples of at least 1/4n2 log n with probability 1−O(1/n).

Using the probability bound from Lemma 7 the expected running time can be bounded with the substitution T ′ :=

T/(n2 ln n) and

E(T ′) ≤ 1 · Prob{0 ≤ T′ < 1} + 2 · Prob{1 ≤ T < 2} + . . .

≤ 2 +
∞∑

c=3

c · Prob{T′ ≥ c− 1}

≤ 2 +
∞∑

c=1

(c + 2)n−c

≤ 2 +
n

(n− 1)2
+

2
n− 1

as E(T ) = O(n2 log n). !

Proof of Theorem 6. Consider again the two successive phases, where the first phase ends when the first Pareto-

optimal point is found. The algorithm starts with a random point. A mutation can cause a step towards the Pareto

front (successful step) if in the first half of the bit-sting a zero is flipped, or an incomparable step if any bit in the second

half is flipped. If a one in the first half flips, nothing happens, because the mutant is dominated by the parent. If an

incomparable mutant is not already in the population, it will be accepted (line 21) while its parent remains, causing the

population to grow. A successful mutation leading to a dominating child, however, will delete its parent and all other

dominated individuals (line 16). The remaining individuals in the population are temporarily disabled from offspring

production (line 18). Now consider the Markov chain with n/2 + 1 states, where the state is given by the number of

zeroes in the first half of all population members with w < ∞. The only possible transitions are from state i to i− 1,

which happen with probability i/n. The expected time to absorption into state 0, and hence the time to reach the

Pareto set, is bounded by Θ(n log n).



For the second phase, we proceed similarly to the analysis of FEMO on LOTZ and claim the following: if we allocate

c·n mutation trials to each element of the Pareto front, c ∈ IN, each one will have produced its neighbor with a probability

depending on c. The failure probability, i.e., the probability that we are not ready after all these cn2 mutations in total,

can thus be bounded above by

n∑

i=1

(
1− i

n

)cn

≤
n∑

i=1

(
1
ec

)i

≤ 1
ec − 1

≤
(

1
2

)c−1

.

To bound the expected total number of mutations T we use the substitution T ′ = T/n2, and

E(T ′) ≤
∑∞

c=1 c · P{c− 1 ≤ T ′ ≤ c} ≤
∑∞

c=1 c · P{T ′ ≥ c− 1}

≤
∑∞

c=1 c ·
(

1
2

)c−2 = 4
∑∞

c=1 c ·
(

1
2

)c = 8

leads to an upper bound of E(T ) = 8n2 for the second phase. !

Proof of Theorem 11. The multistart (1+1)-EA has to solve |F ∗| = (n/m + 1)m/2 constrained sub-problems. For

each sub-problem we have to at least solve a CountOnes problem in the first n/2 bits, which takes Θ(n logn) time.

This already proves the lower bound. For the upper bound we pessimistically assume that we then optimize each of the

m/2 trade-off sections separately. As all bits within the same section are interchangeable, this is equivalent with solving

m/2 CountOnes problems of n/m bits, which again takes on average Θ(n logn) time and proves the upper bound.

For SEMO and FEMO, we again apply Lemma 4 with a search space partition where each objective vector constitutes

its own subset. In each subset, let k denote the Hamming distance from the Pareto set, i.e. the number of zeros

among the first n/2 bits. For each k there are |F ∗| subsets in the partition whose elements have a Hamming distance

k to the Pareto set and whose probability of improvement pk equals k/n (flipping one of the zeroes in the first half

of the bit-string). With Lemma 4 we can bound the number of mutations allocated to non-Pareto optimal points by

O(nm/2n log n). On the Pareto front, we want to bound the expected time to find the k-th element under the conditions

that k− 1 elements are already found. Such a bound is given O(kn), and the summation over all k from 1 to |F ∗| leads

to a total expected running time of O(nm+1).

For GEMO, let us again consider two phases depending on whether a Pareto-optimal point has been found so far. In

the first phase, there are two types of mutations that lead to accepting new points: successful mutations and indifferent

mutations. Successful mutations cause the active population to shrink to one element x and increase the objective sum

s =
∑m

i=1 fi(x) by one. Indifferent mutations can cause the population to grow, but keep s constant. Therefore, at most

n successful mutations are needed in the first phase. Since the probability of a successful mutation is always at least 1/n,

the expected running time of the first phase is O(n2). At the end of the first phase, P contains exactly one element of

the Pareto set, and we can describe the behavior in phase 2 by the the model of Alg. 5. In this case, |V | = (n/m+1)m/2,

|E| ≤ m|V | and p ≥ 1/n. Application of Theorem 9 leads to the claimed bound. !
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Figure Captions

Fig. 1. Objective space of the LOTZ problem with n = 8

Fig. 2. Objective space of the COCZ problem with n = 8

Fig. 3. Schematic view of the mLOTZ problem

Fig. 4. Schematic view of the mCOCZ problem



Table Captions

TABLE I

Bounds on the expected running time derived in this paper.
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(1+1)-EMO SEMO FEMO GEMO

LOTZ Θ(n3) Θ(n3) Θ(n2 log n) Θ(n2 log n)

COCZ Θ(n2 log n) O(n2 log n) O(n2 log n) Θ(n2)

mLOTZ Θ(nm/2n2) O(nm+1) O(nm+1) O(nm/2n logn)

mCOCZ Θ(nm/2n log n) O(nm+1) O(nm+1) O(nm/2n logn)

TABLE I

Bounds on the expected running time derived in this paper.
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