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Abstract
Over the past few years, the research on evolutionary algorithms has demonstrated
their niche in solving multiobjective optimization problems, where the goal is to find a
number of Pareto-optimal solutions in a single simulation run. Many studies have
depicted different ways evolutionary algorithms can progress towards the Pareto-
optimal set with a widely spread distribution of solutions. However, none of the
multiobjective evolutionary algorithms (MOEAs) has a proof of convergence to the
true Pareto-optimal solutions with a wide diversity among the solutions. In this pa-
per, we discuss why a number of earlier MOEAs do not have such properties. Based
on the concept of -dominance, new archiving strategies are proposed that overcome
this fundamental problem and provably lead to MOEAs that have both the desired
convergence and distribution properties. A number of modifications to the baseline
algorithm are also suggested. The concept of -dominance introduced in this paper is
practical and should make the proposed algorithms useful to researchers and practi-
tioners alike.

Keywords
Evolutionary algorithms, multiobjective optimization, convergence, preservation of
diversity, -approximation, elitism, archiving.

1 Introduction

After the doctoral study of Schaffer (1984) on the vector evaluated genetic algorithm
(VEGA), Goldberg’s (1989) suggestion of the use of nondominated sorting along with
a niching mechanism generated an overwhelming interest in multiobjective evolutionary
algorithms (MOEAs). Initial MOEAs – Multiobjective Genetic Algorithm (MOGA) (Fon-
seca and Fleming, 1993),Nondominated Sorting Genetic Algorithm (NSGA) (Srinivas and
Deb, 1994), andNiched Pareto Genetic Algorithm (NPGA) (Horn et al., 1994) – used Gold-
berg’s suggestion in a straightforwardmanner: (i) the fitness of a solution was assigned
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using the extent of its domination in the population, and (ii) the diversity among solu-
tions were preserved using a niching strategy. The above three studies have shown that
differentways of implementing the above two tasks can all result in successful MOEAs.
However, these algorithms could not ensure convergence to the true Pareto-optimal set
since an operator for elite preservation was missing. Thus, the latter MOEAs mainly
concentrated on how elitism could be introduced in an MOEA. This resulted in a num-
ber of advanced algorithms described in Section 3.2: SPEA, PAES, and NSGA-II. With
the development of better algorithms, multiobjective evolutionary algorithms have also
been used in a number of interesting application case studies (Zitzler et al., 2001).

What is severely lacking are studies related to theoretical convergence analy-
sis with guaranteed spread of solutions. In this regard, Rudolph (1998b, 2001) and
Rudolph and Agapie (2000) suggested a series of algorithms, all of which guarantee
convergence, but do not address the following two aspects:

1. The convergent algorithms do not guarantee maintaining a spread of solutions.

2. The algorithms do not specify any time complexity for their convergence to the
true Pareto-optimal set.

Although the second task is difficult to achieve even for simple objective functions
(see Laumanns et al. (2002)) and also in the single-objective case, the first task is as
important as the task of converging to the true Pareto-optimal set. Deb (2001) suggested
a steady-state MOEA that attempts to maintain spread while converging to the true
Pareto-optimal front. But there is no proof for its convergence properties. Knowles
(2002) has analyzed two further possibilities: metric-based archiving and adaptive grid
archiving. The metric-based strategy requires a function that assigns a scalar value to
each possible approximation set reflecting its quality and fulfilling certainmonotonicity
conditions. Convergence is then defined as the achievement of a local optimum of the
quality function. The adaptive grid archiving strategy implemented in PAES provably
maintains solutions in some “critical” regions of the Pareto set once they have been
found, but convergence can only be guaranteed for the solutions at the extremes of the
Pareto set.

In this paper, we propose archiving/selection strategies that guarantee both
progress towards the Pareto-optimal set and covering the whole range of nondomi-
nated solutions. The algorithms maintain a finite-sized archive of nondominated solu-
tions that is iteratively updated in the presence of a new solution based on the concept
of -dominance. The use of -dominance also makes the algorithms practical by al-
lowing a decision maker to control the resolution of the Pareto set approximation by
choosing an appropriate value. The archiving algorithms suggested here are generic
and enable convergence with a guaranteed spread of solutions.

In the remainder of the paper, we state the general structure of an iterative archive-
based search procedure, which is usually used for multiobjective optimization. There-
after, we briefly review the existing MOEAs and discuss why they do not have theo-
retical convergence as well as diversity-preservation properties at the same time. In
Section 4 we formally define our concepts of -dominance and the corresponding -
Pareto-optimal set as well as the new selection algorithms. Section 5 presents some
simulation results to demonstrate the behavior of the new algorithms and to highlight
the important differences to the existing approaches. In Section 6, various practically
relevant extensions to the new approach are outlined and discussed. The proposed con-
vergent MOEAs are interesting and should makeMOEAsmore useful and attractive to
both theoreticians and practitioners.
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Algorithm 1 Iterative search procedure
1:
2:
3: while do
4:
5: generates new search point
6: updates archive
7: end while
8: Output:

2 Structure of an Iterative Multiobjective Search Algorithm

The purpose of this section is to informally describe the problem we are dealing with.
To this end, let us first give a template for a large class of iterative search procedures
characterized by the generation of a sequence of search points and a finite memory.

The purpose of such algorithms is to find or approximate the Pareto set of the
image set of a vector valued function defined over some domain . In
the context ofmultiobjective optimization, , , and are often called themulti-valued
objective function, the objective space, and the decision space, respectively.

An abstract description of a generic iterative search algorithm is given in Algo-
rithm 1. The integer denotes the iteration count, the -dimensional vector is
the sample generated at iteration , and the set will be called the archive at itera-
tion and should contain a representative subset of the samples in the objective space
generated so far. To simplify the notation, we represent samples by -dimensional

real vectors where each coordinate represents one of the objective values. Additional
information about the corresponding decision values could be associated to but will
be of no concern in this paper.

The purpose of the function is to generate a new solution in each iteration
, possibly using the contents of the old archive set . The function gets the
new solution and the old archive set and determines the updated one .
In general, the purpose of this sample storage is to gather useful information about the
underlying search problem during the run. Its use is usually two-fold: On one hand, it
is used to store the best solutions found so far; on the other hand, the search operator
exploits this information to steer the search to promising regions.

This algorithm could be viewed as an evolutionary algorithm when the
operator is associatedwith variation (recombination andmutation). However, we point
out that all following investigations are equally valid for any kind of iterative process
that can be described as Algorithm 1 and used for approximating the Pareto set of
multiobjective optimization problems (e.g., simulated annealing, tabu search).

There are several reasons why the archive should be of constant size, inde-
pendent of the number of iterations . At first, the computation time grows with the
number of archived solutions, for example, the function may use it for guiding
the search, or it may simply be impossible to store all solutions as the physical mem-
ory is always finite. In addition, the value of presenting such a large set of solutions
to a decision maker is doubtful in the context of decision support, instead one should
provide him with a set of the best representative samples. Finally, in limiting the size of
solution set, preference information could be used to steer the process to certain parts
of the search space.
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Figure 1: Representation of the generic search Algorithm 1.

This paper solely deals with the function , i.e., with an appropriate handling
of the archive. Because of the reasons described above, the corresponding algorithm
should have the following properties (see also Figure 1):

The algorithm is provided with one sample at each iteration, i.e., one at a time.

It operates with finite memory. In particular, it cannot store all the samples sub-
mitted until iteration .

The algorithm should maintain a set of a limited size, which is independent
of the iteration count . The set should contain a representative subset of the best
samples received so far.

A clear definition of the term representative subset of the best samples will be given
in Section 4.1. But according to the common notion of optimality in multiobjective op-
timization and the above discussion, it should be apparent that the archive should
contain a subset of all Pareto vectors of the samples generated until iteration . In ad-
dition, these selected Pareto vectors should represent the diversity of all Pareto vectors
generated so far.

We will construct such an algorithm in Sections 4.2 and 4.3. Beforehand, existing
approaches will be described.

3 Existing Multiobjective Algorithms and Their Limitations

Here, we discuss a number of archiving strategies that are suggested in the context of
MOEAs. They can be broadly categorized into two categories depending on whether
their focus lies on convergence or distribution quality.

3.1 Algorithms for Guaranteed Convergence
Theoretic work on convergence in evolutionary multiobjective optimization is mainly
due to Rudolph (1998a, 1998b, 2001), Rudolph and Agapie (2000), and Hanne
(1999, 2001). The corresponding concepts and their algorithms are described in the
following.
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Efficiency Preservation and the Problem of Deterioration Hanne (1999) suggested
and implemented (2001) a selection strategy for MOEAs based on the concept of “(neg-
ative) efficiency preservation” as a multiobjective generalization of the “plus” (elitist)
selection in evolution strategies. He defines efficiency preservation as the property of
only accepting new solutions that dominate at least one of the current solutions. Neg-
ative efficiency preservation is given when a solution is discarded only if a dominating
solution is accepted in return. Both properties are mutually independent, and suffi-
cient to preclude the problem of deterioration. Deterioration occurs, when elements of a
solution set at a given time are dominated by a solution set the algorithm maintained
some time before. This can happen using the standard Pareto-based selection schemes
even under elitism, as well as with virtually all archiving schemes used in the advanced
state-of-the-art MOEAs, as will be described shortly.

In Hanne (1999), a convergence proof for a -MOEAwith Gaussian mutation
distributions over a compact real search space has been enabled by the application of
a (negative) efficiency preservation selection scheme. A disadvantage of this approach
is that no assumptions can be given as to the distribution of solutions, since with both
efficiency and negative efficiency preservation, arbitrary regions of the objective space,
and hence of the Pareto set, can become unreachable.

Rudolph’s and Agapie’s Elitist MOEAs Based on Rudolph (1998a), Rudolph and
Agapie (2000) suggested MOEAs with a fixed-size archive, where a sophisticated se-
lection process precludes the problem of deterioration. They have shown that these al-
gorithms with variation operators having a positive transition probability matrix guar-
antee convergence to the Pareto-optimal set. However, when all archive members are
Pareto-optimal, the algorithm does not allow any new Pareto-optimal solution to enter
the archive. Thus, although the algorithms guarantee convergence to the true Pareto-
optimal front, they do not guarantee a good distribution of Pareto-optimal solutions.

3.2 Elitist MOEAs with Focus on the Distribution Quality
Recently a number of elitist MOEAs have been proposed that especially address the
diversity of the archived solutions by different mechanisms.

Pareto-Archived Evolution Strategy (PAES) Knowles and Corne (2000) suggested a
simple elitist MOEA using a single parent, single child -evolutionary algorithm
called PAES. If a new solution is not dominated by any archive member, it is included
in the archive, deleting in turn all members that it dominates. If the archive would
exceed its maximum size, the acceptance of new solutions is decided by a histogram-
like density measure over a hyper-grid division of the objective space. This archiving
strategy is similar to the one proposed by Kursawe (1990, 1991), who already used an
adaptive distance measure to maintain a good spread of nondominated solutions in a
fixed-size archive.

Strength Pareto Evolutionary Algorithm (SPEA) Zitzler and Thiele (1999) have sug-
gested an elitist MOEA using the concept of nondomination and a secondary popula-
tion of nondominated points. After every generation, the secondary population is up-
dated with the nondominated offspring, while all dominated elements are discarded.
If this archive exceeds its maximum size, a clustering mechanism groups all currently
nondominated solutions into a predefined number of clusters and picks a representa-
tive solution from each cluster, thereby ensuring diversity among the external popula-
tion members.
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Elitist Non-Dominated Sorting GA (NSGA-II) In NSGA-II (Deb et al., 2000), the
parent and offspring population (each of size ) are combined and evaluated using
(i) a fast nondominated sorting approach, (ii) an elitist approach, and (iii) an efficient
crowding approach. When more than population members of the combined popu-
lation belong to the nondominated set, only those that are maximally apart from their
neighbors according to the crowding measure are chosen.

This way, like PAES and SPEA, an existing nondominated solution may get replaced
by another, since selection is then based only on the specific diversity or density mea-
sure or on the clustering procedure. In a succession of these steps, deterioration possi-
bly occurs, thus convergence can no longer be guaranteed for any of these algorithms.

3.3 Limitations
It is clear from the above discussion that the above elitist MOEAs cannot achieve both
tasks simultaneously, either they enable convergence or they focus on a good distribu-
tion of solutions. The convergence criterion can easily be fulfilled by dominance preser-
vation, however, a pure implementation of this approach leaves the distribution aspect
unsolved. All algorithms focusing on a good distribution are in danger of deterioration
though. The diversity-preservation operator used in each of the above algorithms is
primarily geared to maintain spread among solutions. While doing so, the algorithm
has no way of knowing which solutions are already Pareto-optimal and which are not.
The diversity-preservation operator always emphasizes the less crowded regions of the
nondominated solutions.

4 Algorithms for Convergence and Diversity

Before we present the update functions for finding a diverse set of Pareto-optimal so-
lutions, we define some terminology.

4.1 Concept of Pareto Set Approximation
In this section, we define relevant concepts of dominance and (approximate) Pareto
sets. Without loss of generality, we assume a normalized and positive objective space
in the following for notational convenience. The algorithms presented in this paper
assume that all objectives are to be maximized. However, either by using the duality
principle (Deb, 2001) or by simple modifications to the domination definitions, these
algorithms can be used to handle minimization or combined minimization and maxi-
mization problems.

Objective vectors are compared according to the dominance relation defined
below and displayed in Figure 2 (left).

DEFINITION 1 (Dominance Relation): Let . Then is said to dominate (denoted
as ) iff

1.

2.

Based on the concept of dominance, the Pareto set can be defined as follows.
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Figure 2: Graphs visualizing the concepts of dominance (left) and -dominance (right).

DEFINITION 2 (Pareto Set): Let be a set of vectors. Then the Pareto set of is
defined as follows: contains all vectors that are not dominated by any vector ,
i.e.,

(1)
Vectors in are called Pareto vectors of . The set of all Pareto sets of is denoted as .

From the above definition we can easily deduce that any vector is dominated
by at least one , i.e.,

such that (2)

Moreover, for a given set , the set is unique. Therefore, we have .
For many sets , the Pareto set is of substantial size. Thus, the numerical deter-
mination of is prohibitive, and as a result of an optimization is questionable.
Moreover, it is not clear at all what a decision maker can do with such a large result
of an optimization run. What would be more desirable is an approximation of
that approximately dominates all elements of and is of (polynomially) bounded size.
This set can then be used by a decision maker to determine interesting regions of the
decision and objective space, which can be explored in further optimization runs.
Next, we define a generalization of the dominance relation as visualized in Figure 2
(right).

DEFINITION 3 ( -Dominance): Let . Then is said to -dominate for some
, denoted as , iff for all

(3)

DEFINITION 4 ( -approximate Pareto Set): Let be a set of vectors and .
Then a set is called an -approximate Pareto set of , if any vector is -dominated by
at least one vector , i.e.,

such that (4)

The set of all -approximate Pareto sets of is denoted as .
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Of course, the set is not unique. Many different concepts for -efficiency1 and the
corresponding Pareto set approximations exist in the operations research literature, a
survey is given by Helbig and Pateva (1994). As most of the concepts deal with infinite
sets, they are not practical for our purpose of producing and maintaining a representa-
tive subset. Nevertheless they are of theoretical interest and have nice properties which
can for instance be used in convergence proofs (see Hanne (1999) for an application in
MOEAs).

Using discrete -approximations of the Pareto set was suggested simultaneously
by Evtushenko and Potapov (1987), Reuter (1990), and Ruhe and Fruhwirt (1990). As
in our approach, each Pareto-optimal point is approximately dominated by some point
of the representative set. The first two papers use absolute deviation (additive , see
below) and the third relative deviation (multiplicative as above), but they are not
concerned with the size of the representative set in the general case.

Recently, Papadimitriou and Yannakakis (2000) and Erlebach et al. (2001) pointed
out that under certain assumptions, there is always an approximate Pareto set whose
size is polynomial in the length of the encoded input. This can be achieved by placing
a hyper-grid in the objective space using the coordinates for each
objective. As it suffices to have one representative solution in each grid cell and to have
only nondominated cells occupied, it can be seen that for any finite and any set
with bounded vectors , i.e., for all , there exists a set
containing

(5)

vectors. A proof will be given in connection with Algorithm 3 in Section 4.3.
Note that the concept of approximation can also be used if other similar definitions

of -dominance are used, e.g., the following additive approximation

(6)

where are constants, separately defined for each coordinate. In this case there exist
-approximate Pareto sets whose size can be bounded as follows:

(7)

where , for all . A further refinement of the concept of
-approximate Pareto sets leads to the following definition.

DEFINITION 5 ( -Pareto Set): Let be a set of vectors and . Then a set
is called an -Pareto set of if

1. is an -approximate Pareto set of , i.e., , and

2. contains Pareto points of only, i.e., .

The set of all -Pareto sets of is denoted as .

1The terms ”efficient” and ”Pareto-optimal” can be used synonymously. While the former appears to be
more frequent in operations research literature, we generally use the latter as it is more common in the field
of evolutionary computation.
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Figure 3: Graphs visualizing the concepts of -approximate Pareto set (left) and -Pareto
set (right).

The above defined concepts are visualized in Figure 3. An -Pareto set not only -
dominates all vectors in , but also consists of Pareto-optimal vectors of only, there-
fore we have .

Since finding the Pareto set of an arbitrary set is usually not practical because
of its size, one needs to be less ambitious in general. Therefore, the -approximate
Pareto set is a practical solution concept as it not only represents all vectors but also
consists of a smaller number of elements. Of course, a -Pareto set is more attractive as
it consists of Pareto vectors only.

Convergence and diversity can be defined in various ways. Here, we consider
the objective space only. According to Definition 3, the value stands for a relative
“tolerance” that we allow for the objective values. In contrast, using Equation (6) we
would allow a constant additive (absolute) tolerance.

The choice of the value is application specific: A decision maker should choose a
type and magnitude that suits the (physical) meaning of the objective values best. The
value further determines the maximal size of the archive according to Equations (5)
and (7).

4.2 Maintaining an -Approximate Pareto Set
We first present an function that leads to the maintenance of an -approximate
Pareto set. The idea is that new points are only accepted if they are not -dominated by
any other point of the current archive. If a point is accepted, all dominated points are
removed.

THEOREM 1: Let be the set of all vectors created in Al-
gorithm 1 and given to the function as defined in Algorithm 2. Then is an -
approximate Pareto set of with bounded size, i.e.,

1.

2.
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Algorithm 2 function for -approximate Pareto set
1: Input:
2: if such that then
3:
4: else
5:
6:
7: end if
8: Output:

PROOF:
1. Suppose the algorithm is not correct, i.e., for some . According
to Definition 4 this occurs only if some is not -dominated by any
member of and is not in .
For not being in , it can either have been rejected at or accepted
at and removed later on. Removal, however, only takes place when some
new enters which dominates (line 6). Since the dominance relation is tran-
sitive, and since it implies -dominance, there will always be an element in that
-dominates , which contradicts the assumption. On the other hand, will only
be rejected if there is another that -dominates (line 2) and – with the
same argument as before – can only be replaced by accepting elements that also
-dominate .

2. Every defines a hyper-rectangle between and , where no
other element of can exist because dominated elements are always deleted
from the set. Furthermore, these areas do not overlap since this would mean that
the two corresponding points -dominate each other, which is precluded by the
acceptance criterion. The maximum number of non-overlapping hyper-rectangles
in the whole objective space is given by .

The algorithms VV and PR of Rudolph and Agapie (2000) can be viewed as special
cases of this algorithm for . In the limit, the -dominance becomes the normal
dominance relation, and the algorithm will always maintain a set of only nondomi-
nated vectors. Of course, according to the previous theorem, the size of this set might
grow to infinity as .

4.3 Maintaining an -Pareto Set
In a next step, we would like to guarantee – in addition to a minimal distance between
points – that the points in are Pareto points of all vectors generated so far. The
following Algorithm 3 has a two level concept. On the coarse level, the search space is
discretized by a division into boxes (see Algorithm 4), where each vector uniquely be-
longs to one box. Using a generalized dominance relation on these boxes, the algorithm
always maintains a set of nondominated boxes, thus guaranteeing the -approximation
property. On the fine level, at most one element is kept in each box. Within a box, each
representative vector can only be replaced by a dominating one (similar to Agapie and
Rudolph’s algorithm), thus guaranteeing convergence.

Now, we can prove the convergence of the above update strategy to the Pareto set
while preserving diversity of solution vectors at the same time.
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Algorithm 3 function for -Pareto set
1: Input:
2:
3: if then
4:
5: else if then
6:
7: else if then
8:
9: else
10:
11: end if
12: Output:

Algorithm 4 function
1: Input:
2: for all do
3:
4: end for
5:
6: Output: box index vector

THEOREM 2: Let be the set of all vectors created in Algo-
rithm 1 and given to the function as defined in Algorithm 3. Then is an -Pareto
set of with bounded size according to Equation (5), i.e.,

1.

2.

PROOF:

1. Suppose the algorithm is not correct, i.e., for some . According to
Definition 5, this occurs only if some is (Case 1) not -dominated by
any member of and not in or (Case 2) in but not in the Pareto set of

.
Case (1): For not being in , it can either have been rejected at
or accepted at and removed later on. Removal, however, only takes place
when some new enters , which dominates (line 6) or whose box value dom-
inates that of (line 4). Since both relations are transitive, and since they both im-
ply -dominance, there will always be an element in that -dominates , which
contradicts the assumption. On the other hand, will only be rejected if there is
another with the same box value and that is not dominated by (line 10).
This , in turn, -dominates and, with the same argument as before, can only be
replaced by accepting elements that also -dominate .

Case (2): Since is not in the Pareto set of , there exists
with . This implies or . Hence, if
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, would not have been accepted. If , would have been removed
from . Thus, , which contradicts the assumption.

2. The objective space is divided into boxes, and from each box at most

one point can be in at the same time. Now consider the equiv-
alence classes of boxes where, without loss of generality, in each class the boxes
have the same coordinates in all but one dimension. There are different
boxes in each class constituting a chain of dominating boxes. Hence, only one
point from each of these classes can be a member of at the same time.

As a result, Algorithms 2 and 3 use finite memory and successively update a finite sub-
set of vectors that -dominate all vectors generated so far. For Algorithm 3, it can addi-
tionally be guaranteed that the subset contains only elements which are not dominated
by any of the generated vectors. Note that specific bounds on the objective values are
not used in the algorithms themselves and are not required to prove the convergence.
They are only utilized to prove the relation between and the size of the archive given
in the second claim.

5 Simulations

This section presents some simulation results to demonstrate the behavior of the pro-
posed algorithms for two example multiobjective optimization problems (MOPs). We use
instances of the iterative search procedure (specified in Algorithm 1) with a common
generator and examine different operators. An isolated assessment of the up-
date strategy of course requires the generator to act independently from the archive set

to guarantee that exactly the same sequence of points is given to the update func-
tion for all different strategies. Despite that, the exact implementation of the generator
is irrelevant for this study, therefore we use standard MOEAs here and take the points
in the sequence of their generation as input for the different update functions.

5.1 Convergence Behavior
At first we are interested in how different update strategies affect the convergence of the
sequence . As a test problem, a two-objective knapsack problem with items is
taken from Zitzler and Thiele (1999). The low number of decision variables is sufficient
to show the anticipated effects, and we found it advantageous for visualization and
comparison purposes to be able to compute the complete Pareto set beforehand via
Integer Linear Programming.

The points given to the update operator are generated by a standard NSGA-II
with population size , one-point crossover, and bit-flip mutations (with probability

). Figure 4 shows the output of sample runs for the different instances
after and iterations (generated objective vectors), using
update operators from SPEA, NSGA-II (both with maximum archive size of ), and
Algorithm 3 with .

It is clearly visible that both the archiving (selection) strategies from SPEA and
NSGA-II suffer from the problem of partial deterioration: Nondominated points – even
those belonging to the “real” Pareto set – can get lost, and in the long run might even be
replaced by dominated solutions. This is certainly not desirable, and algorithms rely-
ing on these strategies cannot claim to be convergent, even if the generator produces all
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Figure 4: Objective space of the knapsack problem. The dots show the elements of
the Pareto set . The different figures correspond to different instances of the
operator in Algorithm 1: NSGA-II (top), SPEA (middle), and Algorithm 3 (bottom).
In each figure, the archive set is shown for (with diamonds) and
for (with boxes). A subset of the samples is enlarged to highlight the
negative effect of losing Pareto-optimal solutions in many current archiving/selection
schemes.
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elements of the Pareto set . In contrast, Algorithm 3 is able to maintain an -Pareto
set of the generated solutions over time.

The number of function evaluations in this experiment is certainly extremely high,
but necessary to produce all Pareto-optimal points in this test case, especially at the
extremes of the Pareto set. It shows that the problem of deterioration does not only
occur at the beginning of a run. The nonconvergent algorithms can even be run in-
finitely long without converging the Pareto set, although all Pareto-optimal points are
generated over and over again.

5.2 Distribution Behavior
In order to test for the distribution behavior, only candidates are taken into account
that fulfill the requirements for convergence: Rudolph and Agapie’s algorithm AR-1
and Algorithm 3. As a test case, the following continuous, three-dimensional, three-
objective problem is used:

Maximize
Maximize
Maximize

for

(8)

The Pareto set of this problem is a surface, a quadrant of the hyper-sphere of ra-
dius around . For the results shown in Figure 5, the real-codedNSGAwithout
fitness sharing, crossover using Simulated Binary Crossover (SBX) (Deb and Agrawal,
1995), with distribution index , and population size was used to generate the
candidate solutions. The distribution quality is judged in terms of the -dominance con-
cept, therefore a discretization of the objective space into boxes (using Algorithm 4with

) is plotted instead of the actual Pareto set. From all boxes intersecting with the
Pareto set, the nondominated ones are highlighted. For an -approximate Pareto set it is
now sufficient to have exactly one solution in each of those nondominated boxes. This
condition is fulfilled by the algorithm using the update strategy Algorithm 3, leading to
an almost symmetric distribution covering all regions. The strategy from AR-1, which
does not discriminate among nondominated points, is sensitive to the sequence of the
generated solution and fails to provide an -approximation of the Pareto set of similar
quality even with an allowed archive size of .

Looking at the graphs of Algorithm 3, one might have the impression that not
all regions of the Pareto set are equally represented by archive members. However,
these examples represent optimal approximations according to the concepts explained
in Section 4.1. They are not intended to give a uniform distribution on a (hypothetical)
surface that might even not exist as in the discrete case.

5.3 Results
The simulation results support the claims of the preceding sections. The archive updat-
ing strategy plays a crucial role for the convergence and distribution properties. The
key results are:

Rudolph and Agapie’s algorithm guarantees convergence, but has no control over
the distribution of points.

The current MOEAs designed for maintaining a good distribution do not fulfill
the convergence criterion, as has been demonstrated for SPEA and NSGA-II for a
simple test case.
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Algorithm AR-1

Algorithm 3, e=0.05
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Figure 5: Objective space of MOP (8). The discretization into boxes according to Algo-
rithm 4 is indicated by showing all boxes that intersect with the Pareto set in dashed
lines. The nondominated boxes are drawn in bold lines. The circles correspond to the
output of different instances of the iterative search algorithm Algorithm 1. For the
upper figure, an update function according to AR-1 was used, for the lower figure, the
function according to Algorithm 3.

The algorithms proposed in this paper fulfill both the convergence criterion and
the desired distribution control.

6 Possible Extensions

The above baseline algorithms can be extended in several interesting and useful ways.
In the following, we list some of these extensions and variations and discuss them
briefly.
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6.1 Other Definitions of -Dominance
The convergent algorithms can also be implemented with a different definition of -
dominance. For example, with the dominance definition given in (6), grids are uni-
formly sized in the search space. Although the size of the generated Pareto-optimal set
will be different from that presented earlier, the algorithms given so far also maintain
the convergence and preserve the diversity.

Although an identical value is suggested in the definition of -dominance, a dif-
ferent can be used for each coordinate of the objective space. This way, different
precisions among the obtained Pareto-optimal vectors can be obtained in different cri-
teria. The upper bound of the number of Pareto-optimal solutions presented above will
get modified accordingly.

6.2 Guaranteeing a MinimumDistance Between Obtained Vectors
The -dominance definition and the diversity preservation through grids allow a di-
verse andwell-convergent set of Pareto-optimal vectors to be obtained by the proposed
algorithms. Although diversity among the elements is ensured, the distance between
the obtained neighboring Pareto-optimal vectors may not be uniform. It is guaranteed
by the proposed algorithms that one box will have only one solution. But in practice,
two vectors lying on two neighboring boxes may lie very close to each other. To en-
sure a good diversity among neighboring vectors, Algorithm 3 may be modified in the
following manner. In addition to discouraging two vectors to lie on the same box, the
vectors can also be discouraged to lie on the even numbered boxes. This way, vectors
can only lie on the alternate boxes, thereby ensuring a minimum difference of in each
objective function value between two neighboring Pareto-optimal vectors.

6.3 Steering Search by Defining Ranges of Non-Acceptance
In most multiobjective optimization problems, a decision maker plays an important
role. If the complete search space is not of importance to a decision maker, the above
algorithms can be used to search along preferred regions. The concept of -dominance
will then allow prespecified precisions to exist among the obtained preferred Pareto-
optimal vectors.

6.4 Fixed Archive Size by Dynamic Adaptation of
Instead of predetermining an approximation accuracy in advance, one might ask
whether the algorithm would be able to dynamically adjust its accuracy to always
maintain a set of vectors of a given magnitude. A concept like this is implemented
in PAES (see Section 3), where the hyper-grid dividing the objective space is adapted
to the current ranges given by the nondominated vectors. However, PAES does not
guarantee convergence.

Here twomodified versions of the proposed converging algorithms are illustrated.
The idea is to start with a minimal , which is systematically increased every time the
number of archived vectors exceeds a predetermined maximum size.

6.4.1 Maintaining an -Approximate Pareto Set
In order to generate an -approximate Pareto set with a given upper bound on its size,
Algorithm 2 can be modified. After the first pair of mutually nondominating
vectors have been found, an initial is calculated according to Theorem 1 as
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(9)
where is the maximum archive size. is set to the current maximum relative range
of the objectives

(10)

where and , are the current maximum andminimum values of objective
function .

From this onwards, new vectors are accepted according to Algorithm 2, where for
each element, a time stamp is recorded. If the archive would exceed its maximum size

, a larger must be chosen, again using the new ranges and the above formulas. By
this new , all archive elements are again compared in the order of their time stamps.
Whenever one element is -dominated by an older one, the younger will be removed.
This way, the ranges will always be increased in order to cover the whole extent of
the current -approximate Pareto set. However, if the range of the actual Pareto set
decreases in the later part of the run, there is no possibility to decrease the again
without, in general, losing the property given by Theorem 1.

For the -dominance definition given in Equation (6), Equation (9) becomes
, and is calculated as .

Agapie’s and Rudolph’s algorithms AR-1 and AR-2 also implement a fixed-size
archive, but with a constant during the run. This means that the guaranteed
minimal distance of vectors is also zero, hence not guaranteeing to maintain an -
approximate Pareto set.

6.4.2 Maintaining an -Pareto Set
In Algorithm 3, a simple modification would be to start with a minimal using a first
pair of mutually nondominated vectors as in the previous subsection. Afterwards, the
increase of is taken care of by joining boxes and discarding all but the oldest element
from the new, bigger box.

The joining of boxes could be done in several ways, however, for ensuring the
convergence property, it is important not to move or translate any of the box limits,
in other words, the assignment of the elements to the boxes must stay the same. A
simple implementation could join every second box, while it suffices to join only in the
dimensions where the ranges have been exceeded by the new element. This will mean
that in the worst case an area will be -dominated that is almost twice the size of the
actual Pareto set in each dimension. A more sophisticated approach would join only
two boxes at a time, which would eliminate the over-covering, but make a complicated
bookkeeping of several different values in each dimension necessary.

6.4.3 A Bistart Strategy
In cases where the bounds of the Pareto set are much smaller than the bounds on ,
both algorithms suffer from their inability to increase the precision again after having
reached any level of coarseness. In the worst case, they might end up with only one
solution -dominating the whole Pareto set using a rather large .

We illustrate how to use our proposed algorithms to maintain an -approximate
Pareto set or an -Pareto set, respectively, with amaximum predefined cardinality .
For this, a two-step strategy is followed: First, one of the two dynamic algorithms of
the previous section is used to get a first, rough approximation of the Pareto set. From
their results the ranges of the Pareto set in the objective space can be determined and
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used to calculate a fixed for a second run of the algorithm. Of course, one may use
different for the different objectives. In the second run, the only required change to
the operator is that it never accepts any vectors outside the ranges determined
by the first run, hence ensuring that the size of the solution set does not exceed the limit

.

7 Conclusions

In this study, we proposed the -(approximate) Pareto set as a solution concept for
evolutionary multiobjective optimization that is

theoretically attractive as it helps to construct algorithms with the desired conver-
gence and distribution properties, and

practically important as it works with a solution set with bounded size and prede-
fined resolution.

We constructed the first archive updating strategies that

can be used in any iterative search process and

allow for the desired convergence properties, while at the same time,

guaranteeing an optimal distribution of solutions.

As we have exclusively dealt with the update operator (or the archiving/selection
scheme of the corresponding search and optimization algorithms) so far, all statements
had to be done with respect to the generated solutions only. In order to make a state-
ment about the convergence to the Pareto set of the whole search space, one has of
course to include the generator into the analysis. However, with appropriate assump-
tions (nonvanishing probability measure for the generation of all search points at any
time step), it is clear that the probability of not creating a specific point goes to zero as
goes to infinity. Analogously to Hanne (1999) or Rudolph and Agapie (2000), results
on the limit behavior, such as almost sure convergence and stochastic convergence to
an -Pareto set (including features described in this paper), can be derived.

Though the limit behavior might be of mainly theoretical interest, it is of high
practical relevance that now the problem of partial deterioration, which was imminent
even in the elitist MOEAs, could be solved. Using the proposed archiving strategy to
maintain an -Pareto, set the user can be sure to have, in addition to a representative,
well-distributed approximation, a true elitist algorithm in the sense that no better solu-
tion had been found and subsequently lost during the run.

Interesting behavior occurs when there are interactions between the archive and
the generator. Allowing the archive members to take part in the generating process has
empirically been investigated (e.g., Laumanns et al. (2000, 2001)) using a more general
model and a parameter called elitism intensity. Now, the theoretical foundation is also
given so that the archivedmembers are really guaranteed to be the best solutions found.
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