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Scalable Test Problems
for Evolutionary Multiobjective Optimization

Kalyanmoy Deb, Lothar Thiele, Marco Laumanns and Eckart Zitzler

Summary. After adequately demonstrating the ability to solve different two-
objective optimization problems, multiobjective evolutionary algorithms (MOEAs)
must demonstrate their efficacy in handling problems having more than two
objectives. In this study, we have suggested three different approaches for
systematically designing test problems for this purpose. The simplicity of
construction, scalability to any number of decision variables and objectives,
knowledge of the shape and the location of the resulting Pareto-optimal front, and
introduction of controlled difficulties in both converging to the true Pareto-optimal
front and maintaining a widely distributed set of solutions are the main features of
the suggested test problems. Because of the above features, they should be found
useful in various research activities on MOEAs, such as testing the performance of a
new MOEA, comparing different MOEAs, and better understanding of the working
principles of MOEAs.

6.1 Introduction

Most earlier studies on multi-objective evolutionary algorithms (MOEAs)
introduced test problems which were either too simple or not scalable in terms
of number of objectives and decision variables. Some test problems were too
complicated to visualize the exact shape and location of the resulting Pareto-
optimal front. Schaffer’s [1] study introduced two single-variable test problems
(SCH1 and SCH2), which have been widely used as test problems. Kursawe’s
test problem [2], KUR, was scalable to any number of decision variables, but
was not scalable in terms of the number of objectives. The same is true with
Fonseca and Fleming’s test problem [3], FON. Poloni et al.’s test problem [4],
POL used only two decision variables. Although the mathematical formulation
of the problem is non-linear, the resulting Pareto-optimal front corresponds to
an almost linear relationship among decision variables. Viennet’s test problem
[5], VNT, has a discrete set of Pareto-optimal fronts, but was designed for
three objectives only. Similar simplicity prevails in the existing constrained
test problems [6, 7].
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However, in 1999, the first author, for the first time, introduced a
systematic procedure of designing two-objective test problems which are
simple to construct and are scalable to the number of decision variables [8].
In these problems, the exact shape and location of the Pareto-optimal front
are also known. The basic construction used two functionals, g and h∗, with
non-overlapping sets of decision variables to introduce difficulties towards the
convergence to the true Pareto-optimal front and to introduce difficulties along
the Pareto-optimal front for an MOEA to find a widely distributed set of
solutions, respectively. The construction procedure adopted in that study is
not the only alternative for the test problem design and certainly many other
principles are possible. In the absence of any other systematic construction
procedure, those test problems have been used by many researchers since
then. However, they have also been somewhat criticized for the relative
independence feature of the functionals in achieving both the tasks. Such
critics have overlooked an important aspect of that study. The non-overlapping
property of the two key functionals in the test problems was introduced for
ease of the construction procedure. That study also suggested the use of a
procedure to map the original variable vector (say y) on which an MOEA
works to a different decision variable vector (say x) with a transformation
matrix: x = My. This way, although test problems are constructed for two
non-overlapping sets from x, each dependent variable xi involves a correlation
of all (or many) variables of y. Such a mapping couples both aspects of
convergence and maintenance of diversity and makes the problem harder to
solve. However, Zitzler et al. [9] showed that six test problems designed based
on an uncorrelated version of Deb’s construction procedure were even difficult
to solve exactly using the then-known state-of-the-art MOEAs.

In the recent past, many MOEAs have adequately demonstrated their
ability to solve two-objective optimization problems by including three basic
operators: (1) an elite-preserving operator, (2) a niche-preserving operator,
and (3) a non-domination based selection operator. With the suggestion of a
number of such MOEAs, it is time that they must be investigated for their
ability to solve problems with more than two objectives. In order to help
achieve such studies, it is therefore necessary to develop scalable test problems
for a larger number of objectives. Besides testing an MOEA’s ability to solve
problems with a large number of objectives, the proposed test problems may
also be used for systematically comparing two or more MOEAs. Since one
such test problem can be used to test a particular aspect of multiobjective
optimization, such as for convergence to the true Pareto-optimal front or
maintenance of a good spread of solutions, etc., the test problems can be used
to identify MOEAs which are better in terms of that particular aspect. For
these reasons, these test problems may help provide a better understanding of
the working principles of MOEAs, thereby allowing a user to develop better
and more efficient MOEAs.

In the remainder of the study, we first describe the desired features
needed in a test problem and then suggest three approaches for systematically
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designing test problems for multiobjective optimization algorithms. Although
most problems are illustrated for three objectives (for ease of illustration), the
test problems are generic and scalable to an arbitrary number of objectives.
Finally, we suggest a set of nine test problems based on the suggested
construction procedures and show the difficulties faced by two MOEAs
(NSGA-II and SPEA2) in solving these problems.

A short version of this study appeared elsewhere [10],but this study
describes different test problem design procedures in a more systematic
manner and presents more simulation results. Hopefully, the techniques
suggested in this study would be useful in designing further test problems
for multiobjective optimization.

6.2 Desired Features of Test Problems

The ultimate goal of developing any optimization algorithm is to solve real-
world optimization problems reliably and efficiently. However, since in real-
world optimization problems the nature of landscape and optimum solution(s)
are not usually known beforehand, at the end of a simulation run, it becomes
difficult to test how well an algorithm has performed. For this purpose, there
is a need to develop test problems for testing optimization algorithms. Since
the landscape and corresponding optimum solution(s) of such problems will
be known, they allow to test an algorithm’s ability to overcome the difficulties
posed by the landscape and ability to converge near the optimum solution(s).
Keeping in mind the ultimate goal of solving real-world problems, it then
becomes important to construct test problems which are representative to
real-world problems. However, since real-world problems can be very different
from each other and since their landscapes may not be known a priori, it is
essential to design a test suite, instead of a single test problem, for the task.
This way, various complexities which may be present in real-world problems
may be introduced systematically in a number of test problems.

Besides handling different landscape complexities, algorithms should be
scalable to the problem size. An algorithm which is efficient in solving a
problem with a few decision variables may not work well (or may work with
exponentially more computations) in higher problem sizes. Therefore, it is
desirable that a test suite, containing test problems each of which is capable
of testing an algorithm’s ability to handle different aspects of landscape
complexity, is also scalable to the problem size. This way, a test problem
not only allows to study a particular landscape complexity, but also allows to
test how that landscape complexity scales with increased problem sizes. Based
on this discussion, we suggest the following features that a test problem suite
should have for adequately testing an MOEA:

1. Test problems should introduce controllable hindrance to converge to the
true Pareto-optimal front and also to find a widely distributed set of
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Pareto-optimal solutions. This is because convergence near to the Pareto-
optimal front and maintenance of a diverse set of solutions are two basic
goals in multiobjective optimization.

2. Test problems may be scalable to have any number of decision variables.
This is because many real-world problems usually involve a large number
of decision variables. For all practical purposes, test problems involving a
few hundred variables may be included in the test suite.

3. Test problems should be scalable to have any number of objectives.
Although in most real-world problems the number of objectives can be
reduced to four or five, test problems involving as large as 15 to 20
objectives may be included in the test suite.

4. Test problems may be simple to construct. This may not be an essential
matter for constructing test problems, but if desired features can be
incorporated in test problems with a simple construction procedure, it
is always desirable.

5. The resulting Pareto-optimal front (continuous or discrete) may be easy
to comprehend, and its shape and location may be exactly known. The
corresponding decision variable values may also be easy to find.

6. To make the test problems useful in practice, they should exhibit
difficulties similar to those present in most real-world problems.

It is important to mention that the fifth feature described above may not be of
much importance for comparing two or more MOEAs. But for evaluating an
MOEA’s performance in convergence and maintenance of diversity, knowledge
of the exact Pareto-optimal set is essential.

Along with the test problems designed by keeping the above features in
mind, it does not do any harm to keep a few additional real-world problems
in the test suite. Such problems can be treated as a black-box with a
clearly defined set of input decision variables (and their possible ranges)
and corresponding objective values and constraints (if any). Many such real-
world problems [6, 11] have been already solved using MOEAs and some
representative of them can be included in the test suite. A network design
application problem along with a number of MOEAs already exist on the
PISA [12] web page (http://www.tik.ee.ethz.ch/pisa) for this purpose.

The popularity of two-objective test problems suggested earlier [8] in many
research studies is partly because of the ease of constructing the test problems
and the ease of illustrating the obtained non-dominated solutions against
the true Pareto-optimal solutions in two dimensions. Visually comparing the
obtained set of solutions against the true Pareto-optimal front provides a
clear idea of the performance of an MOEA. This can somewhat be achieved
even for three objectives, with such a comparison shown in three dimensions.
But for problems with more than three objectives, it becomes difficult to
illustrate such a plot. Thus, for higher-objective test problems, it may be
wise to have some regularity in the search space so that the Pareto-optimal
surface is easily comprehensible. One of the ways to achieve this would be to
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have a Pareto-optimal surface symmetric along interesting hyper-planes, such
as f1 = f2 = · · · = fM−1 (where M is the number of objectives). This only
requires a user to comprehend the interaction between fM and f1, and the rest
of the problem can be constructed by using symmetry. Another interesting
approach would be to construct a problem for which the Pareto-optimal
surface is a symmetric curve or at most a three-dimensional surface. Although
M -dimensional, the obtained solutions can be easily illustrated parametrically
in a two-dimensional plot in the case of a curve and in a three-dimensional
plot in the case of the three-dimensional surface.

It is now well established that MOEAs have two tasks to achieve:
converging as close to the Pareto-optimal front and finding as diverse a
set of solutions on the entire Pareto-optimal front as possible. An MOEA
therefore, should be tested for each of the two tasks. Thus, some test problems
should test an MOEA’s ability to negotiate artificial hurdles which hinder
MOEA’s progress towards converging to the true Pareto-optimal front. This
can be achieved by placing some local Pareto-optimal attractors or biased
density of solutions away from the Pareto-optimal front. Test problems must
also test an MOEA’s ability to find a diverse set of solutions. This can
be achieved by making the Pareto-optimal front non-convex, discrete, and
having variable density of solutions along the front. Although these features
of test problems were also suggested for two-objective problems earlier [8],
the technique can be extended to more than two objectives. In any case, the
increased dimensionality associated with a large number of objectives may
cause added difficulties to MOEAs.

In the following sections, we suggest different approaches of designing test
problems for multiobjective optimization.

6.3 Different Methods of Test Problem Design

Although the main focus of the above discussion is based on solving real-
world problems, there is a need to develop simple-to-understand scalable test
problems for theoretical studies, such as studies for analyzing the running time
complexity of MOEAs. Keeping in mind all the above issues which may be
present in a test problem suite, a number of different construction procedures
can be adopted for multiobjective optimization. Here we discuss three different
methods:

1. Multiple single-objective functions approach,
2. Bottom-up approach,
3. Constraint surface approach.

The first approach is the most intuitive one and has been implicitly used
by early MOEA researchers to construct test problems. In this approach,
M different single-objective functions are used to construct a multiobjective
test problem. To simplify the construction procedure, in many cases, different
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objective functions are simply used as different translations of a single
objective function. For example, the problem SCH1 uses the following two
single-objective functions for minimization [1]:

f1(x) = x2, f2(x) = (x − 2)2.

Since the optimum x∗(1) for f1 is not the optimum for f2 and vice versa, the
Pareto-optimal set consists of more than one solution, including the individual
minimum of each of the above functions. All other solutions which make
trade-offs between the two objective functions with themselves and with the
above two solutions become members of the Pareto-optimal set. In the above
problem, all solutions x∗ ∈ [0, 2] become members of the Pareto-optimal set.
Similarly, the problem FON shown below⎧⎪⎪⎨

⎪⎪⎩
Minimize f1(x) = 1 − exp

(
−∑n

i=1(xi − 1√
n
)2
)

,

Minimize f2(x) = 1 − exp
(
−∑n

i=1(xi + 1√
n
)2
)

,

−4 ≤ xi ≤ 4 i = 1, 2, . . . , n.

(6.1)

has x∗
i = −1/

√
n for all i as the minimum solution for f1 and x∗

i = 1/
√

n for
all i as the minimum solution for f2. The Pareto-optimal set is constituted
with all solutions in x∗

i ∈ [−1/
√

n, 1/
√

n] for all i. Veldhuizen [7] lists a
number of other test problems, which follow this construction principle. It
is interesting to note that such a construction procedure can be extended
to problems having more than two objectives as well [13]. In a systematic
procedure, each optimum may be assumed to lie on each of M (usually < n)
coordinate directions. The main advantage of this procedure is its simplicity
and ease of construction. However, the Pareto-optimal set resulting from such
a construction depends on the chosen objective functions, thereby making it
difficult to comprehend the true nature of the Pareto-optimal front. Moreover,
even in simple objective functions (such as in SCH2 [1]), the Pareto-optimal
front may be a combination of disconnected fronts. Thus, a test problem
constructed using this procedure must be carefully analyzed to find the true
Pareto-optimal set of solutions. For running time complexity analysis, a two-
objective leading-ones-trailing-zeros (LOTZ) problem was designed recently
[14].

The latter two approaches of test problem design mentioned above directly
involve the Pareto-optimal front, thereby making them convenient to be used
in practice. Since they require detailed discussions, we devote two separate
sections to describing them.

6.4 Bottom-up Approach

In this approach, a mathematical function describing the Pareto-optimal front
is assumed in the objective space and an overall objective space is constructed
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Figure 6.1. First quadrant of a unit sphere as a Pareto-optimal front.

from this front to define the test problem. For two objectives, one such
construction was briefly suggested earlier [8] and was extended for higher
objectives elsewhere [6]. Here we outline the generic procedure through a
three-objective example problem:

Step 1: Choose a Pareto-optimal front. The first task in the bottom-up
approach is to choose the Pareto-optimal front. For M objectives, this
means designing a parametric surface involving (M − 1) variables. For
illustration purposes, let us assume that we would like to have a Pareto-
optimal front in a three-objective problem, where all objective functions
take non-negative values and the desired front is the surface of an octant of
a sphere of radius one (as shown in Figure 6.1). With the help of spherical
coordinates (we call them parametric variables) θ, γ, and r (= 1 here),
the front can be described as follows:

f1(θ, γ) = cos θ cos(γ + π/4),
f2(θ, γ) = cos θ sin(γ + π/4),
f3(θ, γ) = sin θ,

where 0 ≤ θ ≤ π/2,
−π/4 ≤ γ ≤ π/4.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6.2)

It is clear from the construction of the above surface that if all three
objective functions are minimized, any two points on this surface are non-
dominated to each other.

Step 2: Build the objective space. Using the chosen Pareto-optimal surface,
we construct the complete objective space. A simple way to construct
the rest of the objective space is to construct an extreme boundary
surface parallel to the Pareto-optimal surface, so that the hyper-volume
bounded by these two surfaces constitute the entire objective space. This
can be achieved by introducing an additional variable in the parametric
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Figure 6.2. Overall search space is bounded by the two spheres.

equations. For the example problem, this can be achieved by multiplying
the above three functions with a radius term, which takes a value greater
than or equal to one. Different values of the third independent variable r
(besides θ and γ) will construct different layers of spherical surfaces on top
of the Pareto-optimal sphere. Thus, the overall problem with the above
three variables is as follows:

Minimize f1(θ, γ, r) = (1 + g(r)) cos θ cos(γ + π/4),
Minimize f2(θ, γ, r) = (1 + g(r)) cos θ sin(γ + π/4),
Minimize f3(θ, γ, r) = (1 + g(r)) sin θ,

0 ≤ θ ≤ π/2,
−π/4 ≤ γ ≤ π/4,
g(r) ≥ 0.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.3)

As described earlier, the Pareto-optimal solutions for the above problem
are as follows:

0 ≤ θ∗ ≤ π/2, −π/4 ≤ γ∗ ≤ π/4, g(r∗) = 0.

Figure 6.2 shows the overall objective space with any function for g(r)
with 0 ≤ g(r) ≤ 1. We shall discuss more about different g(r) functions
a little later. The above construction procedure illustrates how easily a
multiobjective test problem can be constructed from an initial choice of a
Pareto-optimal surface.

Step 3: Construct the decision space. The above construction of the objective
space requires exactly M variables, describing an objective vector
anywhere in the objective space. The final task is to map each decision
variable vector to an objective vector. This mapping provides an
additional flexibility in constructing a test problem. For this mapping,
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any number of decision variables (n) can be chosen. If n < M , not
all parametric variables are independent, thereby causing a reduction
in dimensionality of the Pareto-optimal surface. For the three-objective
example problem, the three parametric variables used earlier (θ, γ, and
r) can each be considered as a function of n decision variables of the
underlying problem:

θ = θ(x1, x2, . . . , xn), (6.4)
γ = γ(x1, x2, . . . , xn), (6.5)
r = r(x1, x2, . . . , xn). (6.6)

The functions must be so chosen that they satisfy the lower and upper
bounds of θ, γ and g(r) mentioned in Equation 6.3.

Although the above construction procedure is simple, it can be used to
introduce different modes of difficulty described earlier. In the following, we
describe a few such extensions of the above construction.

6.4.1 Difficulty in Converging to the Pareto-optimal Front

The difficulty of a search algorithm to progress towards the Pareto-optimal
front from the interior of the objective space can be introduced by simply using
a difficult g function. It is clear that the Pareto-optimal surface corresponds
to the minimum value of function g. A multi-modal g function with a global
minimum at g∗ = 0 and many local minima at g∗ = νi value will introduce
global and local Pareto-optimal fronts, where a multiobjective optimizer can
get stuck to.

Moreover, even using a unimodal g function, variable density of solutions
can be introduced in the search space. For example, for the three-objective
example problem, if g(r) = r10 is used, denser solutions exist away from the
Pareto-optimal front. Figure 6.3 shows 15,000 solutions, which are randomly
created in the decision variable space of the above problem. On the objective
space, they are shown to be biased away from the Pareto-optimal front. For
such a biased search space away from the Pareto-optimal front, multiobjective
optimizers may have difficulties in converging quickly to the desired front.

6.4.2 Difficulties Across the Pareto-optimal Front

By using a non-linear mapping between parametric and decision variables,
some portion of the search space can be made to have more dense solutions
than the rest of the search space. For example, in the three-objective problem
a variable density of solutions can be created on the Pareto-optimal front
by choosing non-linear expressions for the parametric variables θ and γ in
Equations 6.4 to 6.5. For example, Figures 6.4 and 6.5 show the problem
stated in Equation 6.3 with
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Figure 6.3. The effect of a non-linear g function.

θ(x1) = π
2 x1,

γ(x2) = π
2 x2 − π

4 .
and

θ(x1) = π
2 0.5

(
1 + [2(x1 − 0.5)]11

)
,

γ(x2) = π
2 0.5

(
1 + [2(x2 − 0.5)]11

)− π
4 .

respectively. In both cases, g(r) = r = x3 is chosen. In order to satisfy the
bounds in Equation 6.3, we have chosen 0 ≤ x1, x2, x3 ≤ 1 and 15,000
randomly created points (in the decision space) are shown in each figure
showing the objective space. The figures show the density of solutions in
the search space gets affected by the choice of mapping of the parametric
variables. In the second problem, there is a natural bias for an algorithm to
find solutions in middle region of the search space1. In trying to solve such
test problems, the task of an MOEA would be to find a widely distributed
set of solutions on the entire Pareto-optimal front despite the natural bias of
solutions in certain regions on the Pareto-optimal front.

6.4.3 Generic Sphere Problem

The following is a generic problem to that described in Equation 6.3, having
M objectives.

Minimize f1(θ, r) = (1 + g(r)) cos θ1 cos θ2 · · · cos θM−2 cos θM−1,
Minimize f2(θ, r) = (1 + g(r)) cos θ1 cos θ2 · · · cos θM−2 sin θM−1,
Minimize f3(θ, r) = (1 + g(r)) cos θ1 cos θ2 · · · sin θM−2,
...

...
Minimize fM−1(θ, r) = (1 + g(r)) cos θ1 sin θ2,
Minimize fM (θ, r) = (1 + g(r)) sin θ1,

0 ≤ θi ≤ π/2, for i = 1, 2, . . . , (M − 1),
g(r) ≥ 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.7)

1In three-objective knapsack problems, such a biased search space is observed
elsewhere [15].
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Note that the variables are mapped in a different manner here. The decision
variables are mapped to the parametric variable vector θ (of size (M − 1)) as
follows:

θi =
π

2
xi, for i = 1, 2, . . . , (M − 1). (6.8)
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The above mapping and the condition on θi in Equation 6.7 restrict each of
the above xi to lie within [0, 1]. The rest (n−M +1) of the decision variables
are defined as the r vector (or ri = xM+i−1 for i = 1, 2, . . . , (n − M + 1)) and
a suitable g(r) is chosen. It is clear that the above generic sphere function is
defined for n ≥ M .

The Pareto-optimal surface always occurs for the minimum of g(r)
function. For example, if the function g(r) = ‖r‖2 with ri ∈ [−1, 1] is chosen,
the Pareto-optimal surface corresponds to ri = 0 and the optimal function
values must satisfy the following condition:

M∑
i=1

(f∗
i )2 = 1. (6.9)

As mentioned earlier, the difficulty of the above test problem can also be
varied by using different functionals for fi and g.

6.4.4 Curve Problem

Instead of having a complete M -dimensional surface as the Pareto-optimal
surface, a lower-dimensional surface can also be chosen as the Pareto-optimal
front to the above problem. We realize that in this case not all θi variables will
be independent to each other. For example, in the case of an M -dimensional
curve as the Pareto-optimal front, there would be only one independent
variable describing the Pareto-optimal front. A simple way to achieve this
would be to use the following mapping of variables:

θi =
π

4(1 + g(r))
(1 + 2g(r)xi) , for i = 2, 3, . . . , (M − 1), (6.10)

The above mapping ensures that the curve is the only non-dominated region
in the entire search space. Since g(r) = 0 corresponds to the Pareto-optimal
front, θi = π/4 for all but the first variable. The advantage of this problem
over the generic sphere problem as a test problem is that a two-dimensional
plot of Pareto-optimal points with fM and any other fi will mark a curve
(circular or elliptical). A plot with any two objective functions (other than
fM ) will show a straight line. Figure 6.6 shows a sketch of the objective space
and the resulting Pareto-optimal curve for a three-objective version of the
above problem. One drawback with this formulation is that the density of
solutions closer to the Pareto-optimal curve is more than anywhere else in
the search space. In order to make the problem more difficult, a non-linear
g(r) function with a higher density of solutions away from g(r) = 0 (such as
g(r) = 1/‖r‖α, where α � 1) can be used. Using a multi-modal g(r) function
will also cause multiple local Pareto-optimal surfaces to exist. Interestingly,
this drawback of the problem can be used to create a hard maximization
problem. If all the objectives are maximized in the above problem, the top
surface becomes the desired Pareto-optimal front. Since there exist less dense
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Figure 6.6. The search space and the Pareto-optimal curve.

solutions on this surface, this problem may be a difficult maximization test
problem.

Degeneration of the Pareto-optimal front to a low-dimensional surface
(such as a curve) is not a mere fantasy. This can happen in problems
where some objectives are likely to be non-conflicting to each other. For
example, in a recent gearbox design problem having three objectives of
minimizing overall volume of the gearbox, maximizing power delivered, and
minimizing distance between input-output shafts, a three-dimensional curve
appeared as the obtained non-dominated front [16]. This is because of the
fact that minimization of the first and the third objectives are not intuitively
contradictory to each other.

6.4.5 Test Problem Generator

The earlier study [6] suggested a generic multiobjective test problem
generator, which belongs to this bottom-up approach. For M objective
functions, with a complete decision variable vector partitioned into M non-
overlapping groups

x ≡ (x1,x2, . . . ,xM−1,xM )T ,

the following function was suggested:
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Minimize f1(x1),
Minimize f2(x2),

...
...

Minimize fM−1(xM−1),
Minimize fM (x) = g(xM )h (f1(x1), f2(x2), . . . , fM−1(xM−1), g(xM )) ,

subject to xi ∈ R
|xi|, for i = 1, 2, . . . , M.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(6.11)
Here, the Pareto-optimal front is described by solutions which are global
minimum of g(xM ) (with g∗). Thus, the Pareto-optimal front is described
as

fM = g∗h(f1, f2, . . . , fM−1). (6.12)

Since g∗ is a constant, the h function (with a fixed g = g∗) describes the
Pareto-optimal surface. In the bottom-up approach of test problem design,
the user can first choose an h function in terms of the objective function
values, without caring about the decision variables at first. For example, for
constructing a problem with a non-convex Pareto-optimal front, a non-convex
h function can be chosen, such as the following:

h(f1, f2, . . . , fM−1) = 1 −
(∑M−1

i=1 fi

β

)α

, (6.13)

where α > 1. Figure 6.7 shows a non-convex Pareto-optimal front with α = 2
for M = 3 and β = 0.5.

A disjoint set of Pareto-optimal fronts can be constructed by simply
choosing a multi-modal h function as done in the case of two-objective test
problem design [8]. Figure 6.8 illustrates a disconnected set of Pareto-optimal
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Figure 6.8. A disjoint set of Pareto-optimal regions.

surfaces (for three objectives), which can be generated from the following
generic h function:

h(f1, f2, . . . , fM−1) = 2M −
M−1∑
i=1

(2fi + sin(3πfi)) . (6.14)

Once the h function is chosen, a g function can be chosen to construct
the entire objective space. It is important to note that the g function is
defined over a set of decision variables. Recall also that the Pareto-optimal
front corresponds to the global minimum value of the g function. Any other
values of g will represent a surface parallel to the Pareto-optimal surface.
All points in this parallel surface will be dominated by some solutions in the
Pareto-optimal surface. As mentioned earlier, the g function can be used to
introduce complexities in approaching towards the Pareto-optimal region. For
example, if g has a local minimum, a local Pareto-optimal front exists on the
corresponding parallel surface.

Once appropriate h and g functions are chosen, f1 to fM−1 can be chosen
as functions of different non-overlapping sets of decision variables. Using a
non-linear objective function introduces a variable density of solutions along
that objective. The non-linearity in these functions will test an MOEA’s
ability to find a good distribution of solutions, despite the natural non-uniform
density of solutions in the objective space. Another way to make the density
of solutions non-uniform is to use an overlapping set of decision variables for
objective functions. To construct more difficult test problems, the procedure of
mapping the decision variables to an intermediate variable vector, as suggested
earlier [8] can also be used here.
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The recently suggested two-objective counting-ones-counting-zeros problem
(COCZ problem) is a test problem developed using the bottom-up approach
for running time complexity analysis [17].

6.4.6 Advantages and Disadvantages of the Bottom-up Approach

The advantage of using the above bottom-up approach is that the exact form
of the Pareto-optimal surface can be controlled by the developer. The number
of objectives and the variability in density of solutions can all be controlled
by choosing appropriate functions.

Since the Pareto-optimal front must be expressed mathematically, some
complicated Pareto-optimal fronts can be difficult to write mathematically.
Like the two-objective problems suggested in Deb [8], these problems may
also be criticized because of their variable-wise decomposable nature, but we
would like to emphasize that this feature is primarily used to facilitate the
introduction of different problem difficulties in a simple manner. As before, the
problems can be made more complex by using the variable mapping (x = My)
discussed in Section 6.1. Nevertheless, the ability to control different features
of the problem is the main strength of this approach.

6.5 Constraint Surface Approach

Unlike starting from a pre-defined Pareto-optimal surface in the bottom-up
approach, the constraint surface approach begins by predefining the overall
search space. In the following, we describe the construction procedure.

Step 1: Choose a basic objective space. First, a simple M -dimensional
bounded region, such as a rectangular hyper-box or an M -dimensional
hyper-sphere, is assumed. We illustrate the construction principle here
with a hyper-box. Each objective function value is restricted to lie within
a predefined lower and a upper bound. The resulting problem is as follows:

Minimize f1(x),
Minimize f2(x),
...

...
Minimize fM (x),
Subject to f

(L)
i ≤ fi(x) ≤ f

(U)
i for i = 1, 2, . . . , M.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6.15)

It is intuitive that the Pareto-optimal set of the above problem has
only one solution (the solution with the lower bound of each objective
(f (L)

1 , f
(L)
2 , . . . , f

(L)
1 )T . Figure 6.9 shows this problem for three objectives

(with f
(L)
i = 0 and f

(U)
i = 1) and the resulting singleton Pareto-optimal

solution f = (0, 0, 0)T ) is also marked.
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Figure 6.9. Entire cube is the search space. The origin is the sole Pareto-optimal
solution.

Step 2: Eliminate part of the objective space. Next, a number of constraints
(linear or non-linear) involving the objective function values are added:

gj(f1, f2, . . . , fM ) ≥ 0, for j = 1, 2, . . . , J. (6.16)

This is done to chop off portions of the original bounded region
systematically. Figure 6.10 shows the resulting feasible region after adding
the following two linear constraints on the originally chosen three-
objective rectangular box:

g1 ≡ f1 + f3 − 0.5 ≥ 0,

g2 ≡ f1 + f2 + f3 − 0.8 ≥ 0.

What remains is the feasible search space. The objective of the above
problem is to find the non-dominated portion of the boundary of the
feasible search space. Figure 6.10 also marks the Pareto-optimal surface
of the above problem. For simplicity and easier comprehension, each
constraint involving at most two objectives (similar to the first constraint
above) can be used.

Step 3: Map decision variable space to objective space. The final task is to
map each decision variable vector to the objective space. This can be
achieved by choosing each objective function fi as a linear or non-linear
function of n decision variables.

Interestingly, there exist two-variable and three-variable constrained test
problems TNK [18] and problems [19] in the literature using the above
concept. In these problems, only two objectives (with fi = xi) and two
constraints were used. The use of fi = xi made a uniform density of solutions
in the search space. As an illustration of further difficulties through non-linear
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Figure 6.10. Two constraints are added to eliminate a portion of the cube, thereby
resulting in a more interesting Pareto-optimal front.

fi, we construct the following three-objective problem with a bias in the search
space:

Minimize f1(x1) = 1 + (x1 − 1)5,
Minimize f2(x2) = x2,
Minimize f3(x3) = x3,
Subject to g1 ≡ f2

3 + f2
1 − 0.5 ≥ 0,

g2 ≡ f2
3 + f2

2 − 0.5 ≥ 0,
0 ≤ x1 ≤ 2,
0 ≤ x2, x3 ≤ 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.17)

Figure 6.11 shows 25,000 feasible solutions randomly generated in the decision
variable space. The Pareto-optimal curve and the feasible region are shown in
the figure. Because of the non-linearity in the functional f1 with x1, the search
space results in a variable density of solutions along the f1 axis. Solutions are
more dense near f1 = 1 than any other region in the search space. Although
this apparent plane (f1 = 1) is not a local Pareto-optimal front, an MOEA
may get attracted here simply because of the sheer density of solutions near
it.

It is clear that by choosing complicated functions of f1 to fM , more
complicated search spaces can be created. Since the task of an MOEA is
to reach the Pareto-optimal region (which is located at one end of the feasible
search space), interesting hurdles in the search space can be placed to provide
difficulties to an MOEA to reach the desired Pareto-optimal front.

6.5.1 Advantages and Disadvantages

The construction process here is simpler compared to the bottom-up approach.
Simple geometric constraints can be used to construct the feasible search
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Figure 6.11. Non-linearity in functionals produces non-uniform density of solutions.

space. Using this procedure, different shapes (convex, non-convex, or discrete)
of the Pareto-optimal region can be generated. Using a systematic choice of
constraint surfaces, scalable test problems can be constructed. Unlike the
bottom-up approach, here the feasible search space is not constructed by
layer-wise construction from the Pareto-optimal front. Since no particular
structure is used, the feasible objective space can be derived with any non-
linear mapping of the decision variable space.

However, the resulting Pareto-optimal front will, in general, be hard to
express mathematically. Moreover, although the constraint surfaces can be
simple, the shape and continuity of the resulting Pareto-optimal front may
not be easy to visualize. Another difficulty is that since the Pareto-optimal
front will lie on one or more constraint boundaries, a good constraint-handling
strategy must be used with an MOEA. Thus, this approach may be ideal for
testing MOEAs for their ability to handle constraints.

6.6 Difficulties with Existing MOEAs

Most MOEA studies up until now have considered two objectives, except a
few application studies where more than two objectives are used. This is not
to say that the existing MOEAs cannot be applied to problems having more
than two objectives. Developers of the state-of-the-art MOEAs (such as PAES
[20], SPEA [15], NSGA-II [21] and others) have all considered the scalability
aspect while developing their algorithms. The domination principle, non-
dominated sorting algorithms, elite-preserving and other EA operators can
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all be extended for handling more than two objectives. Although the niching
operator can also be applied in most cases, their computational issues and
ability in maintaining a good distribution of solutions need to be investigated
in higher-objective problems. For example, a niching operator may attempt to
maintain a good distribution of solutions by replacing a crowded solution with
a less crowded one and the crowding of a solution may be determined by the
distance from its neighbors. For two objectives, the definition of a neighbor
along the Pareto-optimal curve is clear and involves only two solutions (left
and right solutions). However, for more than two objectives, when the Pareto-
optimal front is a higher-dimensional surface, it is not clear which (and how
many) solutions are neighbors of a solution. Even if a definition can be
made, calculation of a metric to compute distances from all neighbors gets
computationally expensive because of the added dimensionality. Although a
widely distributed set of solutions can be found, as using NSGA-II or SPEA2,
the obtained distribution can be far from being a uniformly distributed set of
points on the Pareto-optimal surface. Niching methods are usually designed
to attain a uniform distribution (provided that the EA operators are able to
generate the needed solutions), the overall process may be much slower in
problems with a large number of objectives. The test problems suggested in
this study will certainly enable researchers to make such a complexity study
for the state-of-the-art MOEAs.

Although the distribution of solutions is a matter to test for problems
with a large number of objectives, it is also important to keep track of the
convergence to the true Pareto-optimal front. Because of sheer increase in the
dimensionality in the objective space, interactions among decision variables
may produce difficulties in terms of having local Pareto-optimal fronts and
variable density of solutions. An increase in dimensionality of the objective
space also causes a large proportion of a random initial population to be
non-dominated to each other [6], thereby reducing the effect of the selection
operator in an MOEA. Thus, it is also important to test if the existing
domination-based MOEAs can reach the true Pareto-optimal front in such
test problems. Since the desired front will be known in test problems, a
convergence metric (such as average distance to the front) can be used to
track the convergence of an algorithm.

6.7 Test Problem Suite

Using the latter two approaches of test problem design discussed in this study,
we suggest here a representative set of test problems – DTLZ problems named
with the first letter of the last names of the authors. In all cases, the problem
can be made more difficult by using a different set of variables y obtained
from the decision variable vector x by a transformation: y = Mx (where M
is a n×n transformation matrix). However, other more interesting and useful
test problems can also be designed using the techniques of this study.
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6.7.1 Test Problem DTLZ1

As a simple test problem, we construct an M -objective problem with a linear
Pareto-optimal front:

Minimize f1(x) = 1
2x1x2 · · ·xM−1(1 + g(xM )),

Minimize f2(x) = 1
2x1x2 · · · (1 − xM−1)(1 + g(xM )),

...
...

Minimize fM−1(x) = 1
2x1(1 − x2)(1 + g(xM )),

Minimize fM (x) = 1
2 (1 − x1)(1 + g(xM )),

subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(6.18)

The last k = (n − M + 1) variables are represented as xM . The functional
g(xM ) requires |xM | = k variables and must take any function with g ≥ 0.
We suggest the following:

g(xM ) = 100

[
|xM | +

∑
xi∈xM

(xi − 0.5)2 − cos(20π(xi − 0.5))

]
. (6.19)

The Pareto-optimal solution corresponds to xi = 0.5 (for all xi ∈ xM ) and
the objective function values lie on the linear hyper-plane:

∑M
m=1 f∗

m = 0.5.
The only difficulty provided by this problem is the convergence to the Pareto-
optimal hyper-plane. The search space contains (11k −1) local Pareto-optimal
fronts, where an MOEA can get attracted before reaching the global Pareto-
optimal front.

To demonstrate how a couple of state-of-the-art MOEAs perform on this
and other test problems suggested in this study, we have applied NSGA-II
and SPEA2 to the three-objective (M = 3) version of the problems. In all
cases, a population of size 100 is used. Since all test problems involve real
parameters, the SBX recombination operator (with ηc = 15) and a variable-
wise polynomial mutation operator (with ηm = 20) [6] are used in all cases.
The crossover probability of 1.0 and mutation probability of 1/n are used.

The performances of NSGA-II and SPEA2 on DTLZ1 after 300 generations
are shown in Figures 6.12 and 6.13, respectively. The figure shows that
both NSGA-II and SPEA2 come close to the Pareto-optimal front and the
distributions of solutions over the Pareto-optimal front are also not bad.
In this problem and in most of the latter problems, we observed a better
distribution of solutions with SPEA2 compared to NSGA-II. However, the
better distributing ability of SPEA2 comes with a larger computational
complexity in its selection/truncation approach compared to that needed in
the objective-wise crowding approach of NSGA-II. The problem can be made
more difficult by using a more difficult g function or a variable transformation
technique suggested earlier. By merely increasing the number of decision
variables used in x, the problem can be made harder.
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Figure 6.12. The NSGA-II population on test problem DTLZ1.
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Figure 6.13. The SPEA2 population on test problem DTLZ1.

6.7.2 Test Problem DTLZ2

This test problem is identical to the problem described in Section 6.4.3:
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Figure 6.14. The NSGA-II population on test problem DTLZ2.

Min. f1(x) = (1 + g(xM )) cos(x1π/2) · · · cos(xM−2π/2) cos(xM−1π/2),
Min. f2(x) = (1 + g(xM )) cos(x1π/2) · · · cos(xM−2π/2) sin(xM−1π/2),
Min. f3(x) = (1 + g(xM )) cos(x1π/2) · · · sin(xM−2π/2),
...

...
Min. fM (x) = (1 + g(xM )) sin(x1π/2),
with g(xM ) =

∑
xi∈xM

(xi − 0.5)2,
0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.20)
Once again, the x vector is constructed with k = n − M + 1 variables. The
Pareto-optimal solutions corresponds to xi = 0.5 for all xi ∈ xM and all
objective function values must satisfy Equation 6.9. NSGA-II and SPEA2 with
identical parameter setting as in DTLZ1 simulation runs and with k = 10 find
Pareto-optimal solutions very close to the true Pareto-optimal front after 300
generations, as shown in Figures 6.14 and 6.15, respectively.

This function can also be used to investigate an MOEA’s ability to scale
up its performance in a large number of objectives. Like in DTLZ1, for M > 3,
the Pareto-optimal solutions must lie inside the first octant of the unit sphere
in a three-objective plot with fM as one of the axes. Since all Pareto-optimal
solutions need to satisfy

∑M
m=1 f2

m = 1, the difference between the left term
with the obtained solutions and one can be used as a metric for convergence
as well. Besides the suggestions given in DTLZ1, the problem can be made
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Figure 6.15. The SPEA2 population on test problem DTLZ2.

more difficult by replacing each variable xi (for i = 1 to (M − 1)) with the
mean value of p variables: xi = 1

p

∑ip
k=(i−1)p+1 xk.

6.7.3 Test Problem DTLZ3

In order to investigate an MOEA’s ability to converge to the global Pareto-
optimal front, we suggest using the above problem with the g function given
in Equation 6.19:

Min. f1(x) = (1 + g(xM )) cos(x1π/2) · · · cos(xM−2π/2) cos(xM−1π/2),
Min. f2(x) = (1 + g(xM )) cos(x1π/2) · · · cos(xM−2π/2) sin(xM−1π/2),
Min. f3(x) = (1 + g(xM )) cos(x1π/2) · · · sin(xM−2π/2),
...

...
Min. fM (x) = (1 + g(xM )) sin(x1π/2),
with g(xM ) = 100

[|xM | +
∑

xi∈xM
(xi − 0.5)2 − cos(20π(xi − 0.5))

]
,

0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.21)
The above g function introduces (3k − 1) local Pareto-optimal fronts and one
global Pareto-optimal front. All local Pareto-optimal fronts are parallel to
the global Pareto-optimal front and an MOEA can get stuck at any of these
local Pareto-optimal fronts, before converging to the global Pareto-optimal
front (at g∗ = 0). The global Pareto-optimal front corresponds to xi = 0.5
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Figure 6.16. The NSGA-II population on test problem DTLZ3.

for xi ∈ xM . The next local Pareto-optimal front is at g∗ = 1. NSGA-II and
SPEA2 populations (using k = 10) after 500 generations are shown in the true
Pareto-optimal fronts in Figures 6.16 and 6.17. It is seen that both algorithms
could not quite converge on to the true front, however both algorithms have
maintained a good diversity of solutions on the true front. The problem can be
made more difficult by using a larger k or a higher-frequency cosine function.

6.7.4 Test Problem DTLZ4

In order to investigate an MOEA’s ability to maintain a good distribution
of solutions, we modify problem DTLZ2 with a different parametric variable
mapping:

Min. f1(x) = (1 + g(xM )) cos(xα
1 π/2) · · · cos(xα

M−2π/2) cos(xα
M−1π/2),

Min. f2(x) = (1 + g(xM )) cos(xα
1 π/2) · · · cos(xα

M−2π/2) sin(xα
M−1π/2),

Min. f3(x) = (1 + g(xM )) cos(xα
1 π/2) · · · sin(xα

M−2π/2),
...

...
Min. fM (x) = (1 + g(xM )) sin(xα

1 π/2),
with g(xM ) =

∑
xi∈xM

(xi − 0.5)2,
0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.22)
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Figure 6.17. The SPEA2 population on test problem DTLZ3.

The parameter α = 100 is suggested here. This modification allows a dense
set of solutions to exist near the fM -f1 plane (as in Figure 6.5). NSGA-II and
SPEA2 populations (using k = 10) at the end of 200 generations are shown
in Figures 6.18 and 6.19, respectively. For this problem, the final population
is found to be dependent on the initial population. But in both methods,
we have obtained either of the three different outcomes: (1) all solutions are
in the f3-f1 plane, (2) all solutions are in the f1-f2 plane, or (3) solutions
are on the entire Pareto-optimal surface. Since the problem has more dense
solutions near the f3-f1 and f1-f2 planes, some simulation runs of NSGA-II
and SPEA2 get attracted to these planes. Problems with a biased density of
solutions at other regions in the search space may also be created using the
mapping suggested in Section 6.4.2. It is interesting to note that although the
search space has a variable density of solutions, the classical weighted-sum
approaches or other directional methods may not have any added difficulty
in solving these problems compared to DTLZ2. Since MOEAs attempt to
find multiple and well-distributed Pareto-optimal solutions in one simulation
run, these problems may hinder MOEAs to achieve a well-distributed set of
solutions.

6.7.5 Test Problem DTLZ5

The mapping of θi in the test problem DTLZ2 can be replaced with that given
in Equation 6.10:



6 Scalable Test Problems 131

2

1

3

0.5

1

1.5
0 0.5 1 1.5

0.5

1

1.5

f

f

f

0
0

Run 2
Run 3

Run 1

Figure 6.18. The NSGA-II population on test problem DTLZ4. Three different
simulation runs are shown.

Min. f1(x) = (1 + g(xM )) cos(θ1π/2) · · · cos(θM−2π/2) cos(θM−1π/2),
Min. f2(x) = (1 + g(xM )) cos(θ1π/2) · · · cos(θM−2π/2) sin(θM−1π/2),
Min. f3(x) = (1 + g(xM )) cos(θ1π/2) · · · sin(θM−2π/2),
...

...
Min. fM (x) = (1 + g(xM )) sin(θ1π/2),
with θi = π

4(1+g(xM )) (1 + 2g(xM )xi) , for i = 2, 3, . . . , (M − 1),
g(xM ) =

∑
xi∈xM

(xi − 0.5)2,
0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.23)
The Pareto-optimal front corresponds to xi = 0.5 for all xi ∈ xM and
function values satisfy

∑M
m=1 f2

m = 1. This problem will test an MOEA’s
ability to converge to a curve and will also allow an easier way to visually
demonstrate (just by plotting fM with any other objective function) the
performance of an MOEA. Since there is a natural bias for solutions close
to this Pareto-optimal curve, this problem may be easy for an algorithm to
solve, as shown in Figure 6.20 and 6.21 obtained using NSGA-II and SPEA2
after 200 generations and with other parameter settings as before and with
k = 10.
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Figure 6.19. The SPEA2 population on test problem DTLZ4. Three different
simulation runs are shown.
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Figure 6.20. The NSGA-II population on test problem DTLZ5.

6.7.6 Test Problem DTLZ6

The above test problem can be made harder by making a similar modification
to the g function in DTLZ5, as done in DTLZ3. However, in DTLZ6, we use
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Figure 6.21. The SPEA2 population on test problem DTLZ5.
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Figure 6.22. The NSGA-II population on test problem DTLZ6.

a different g function:
g(xM ) =

∑
xi∈xM

x0.1
i . (6.24)

Here, the Pareto-optimal front corresponds to xi = 0 for all xi ∈ xM . The size
of xM vector is chosen as 10 and the total number of variables is identical as
in DTLZ5. The above change in the problem makes NSGA-II and SPEA2
difficult to converge to the true Pareto-optimal front as in DTLZ5. The
population after 500 generations of both algorithms are shown in Figures 6.22
and 6.23, respectively. The Pareto-optimal curve is also marked on the plots.
It is clear from the figures that both NSGA-II and SPEA2 do not quite

converge to the true Pareto-optimal curve. The lack of convergence to the



134 Deb et al.

3

1
2

0.5
1 0

0.5

1
0

0.5

1

f
0

f

f

Figure 6.23. The SPEA2 population on test problem DTLZ6.

true front in this problem causes these MOEAs to find a dominated surface
as the obtained front, whereas the true Pareto-optimal front is a curve. In
real-world problems, this aspect may provide misleading information about
the properties of the Pareto-optimal front, a matter which we discuss more in
Section 6.8.

6.7.7 Test Problem DTLZ7

This test problem is constructed using the problem stated in Equation 6.11.
This problem has a disconnected set of Pareto-optimal regions:

Minimize f1(x1) = x1,
Minimize f2(x2) = x2,

...
...

Minimize fM−1(xM−1) = xM−1,
Minimize fM (x) = (1 + g(xM ))h(f1, f2, . . . , fM−1, g),

where g(xM ) = 1 + 9
|xM |

∑
xi∈xM

xi,

h(f1, f2, . . . , fM−1, g) = M −∑M−1
i=1

[
fi

1+g (1 + sin(3πfi))
]
,

subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.25)
This test problem has 2M−1 disconnected Pareto-optimal regions in the search
space. The functional g requires k = |xM | = n − M + 1 decision variables.
The Pareto-optimal solutions corresponds to xM = 0. This problem will test
an algorithm’s ability to maintain subpopulation in different Pareto-optimal
regions. For a problem with k = 20 and M = 3, Figures 6.24 and 6.25 show the
NSGA-II and SPEA2 populations after 200 generations. It is clear that both
algorithms are able to find and maintain stable and distributed subpopulations
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Figure 6.24. The NSGA-II population on test problem DTLZ7.
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Figure 6.25. The SPEA2 population on test problem DTLZ7.

in all four disconnected Pareto-optimal regions. The problem can be made
harder by using a higher-frequency sine function or using a multi-modal g
function as described in Equation 6.19.

6.7.8 Test Problem DTLZ8

Here, we use the constraint surface approach to construct the following test
problem:
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Figure 6.26. The NSGA-II population of non-dominated solutions on test problem
DTLZ8.

Minimize fj(x) = 1
� n

M �
∑�j n

M �
i=�(j−1) n

M � xi, j = 1, 2, . . . , M,

Subject to gj(x) = fM (x) + 4fj(x) − 1 ≥ 0, for j = 1, 2, . . . , (M − 1),
gM (x) = 2fM (x) + minM−1

i,j=1
i�=j

[fi(x) + fj(x)] − 1 ≥ 0,

0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.26)
Here, the number of variables is considered to be larger than the number of
objectives or n > M . We suggest n = 10M . In this problem, there are a total
of M constraints. The Pareto-optimal front is a combination of a straight line
and a hyper-plane. The straight line is the intersection of the first (M − 1)
constraints (with f1 = f2 = · · · = fM−1) and the hyper-plane is represented
by the constraint gM . MOEAs may find difficulty in finding solutions in both
the regions in this problem and also in maintaining a good distribution of
solutions on the hyper-plane. Figures 6.26 and 6.27 show NSGA-II and SPEA2
populations after 500 generations. The Pareto-optimal region (a straight line
and a triangular plane) is also marked in the plots. Although some solutions
on the true Pareto-optimal front are found, there exist many other non-
dominated solutions in the final population. These redundant solutions lie
on the adjoining surfaces to the Pareto-optimal front. Their presence in the
final non-dominated set is difficult to eradicate in real-parameter MOEAs, a
matter which we discuss in Section 6.8.

6.7.9 Test Problem DTLZ9

This final test problem is also created using the constraint surface approach:
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Figure 6.27. The SPEA2 population of non-dominated solutions on test problem
DTLZ8.

Minimize fj(x) =
∑�j n

M �
i=�(j−1) n

M � x0.1
i , j = 1, 2, . . . , M,

Subject to gj(x) = f2
M (x) + f2

j (x) − 1 ≥ 0, for j = 1, 2, . . . , (M − 1),
0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

⎫⎪⎬
⎪⎭

(6.27)
Here too, the number of variables is considered to be larger than the number of
objectives. For this problem, we also suggest n = 10M . The Pareto-optimal
front is a curve with f1 = f2 = · · · = fM−1, similar to that in DTLZ5.
However, the density of solutions gets thinner towards the Pareto-optimal
region. The Pareto-optimal curve lies on the intersection of all (M − 1)
constraints. This feature of this problem may cause MOEAs difficulty in
solving this problem. However, the symmetry of the Pareto-optimal curve
in terms of (M − 1) objectives allows an easier way to illustrate the obtained
solutions. A two-dimensional plot of the Pareto-optimal front with fM and
any other objective function should represent a circular arc of radius one. A
plot with any two objective functions except fM should show a 45o straight
line. Figures 6.28 and 6.29 show NSGA-II and SPEA2 populations after 500
generations on a f3-f1 plot of the 30-variable, three-objective DTLZ9 problem.
The Pareto-optimal circle is also shown in the plots. It is clear that both
algorithms could not cover the entire range of the circle and there exist many
non-dominated solutions away from the Pareto-optimal front.
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Figure 6.28. The NSGA-II population on test problem DTLZ9.

6.8 Redundant Solutions

Many of the above test problems (such as DTLZ6, DTLZ8, and DTLZ9)
introduce a different kind of difficulty to multiobjective real-parameter
optimization techniques. In these problems, the Pareto-optimal front is weakly
non-dominated with the adjoining surfaces (whose intersections give rise to
the Pareto-optimal front). If a good representative set of solutions is not
found on the true Pareto-optimal front, an MOEA which works with the
domination concept can find a set of non-dominated solutions all of which may
not be on the true Pareto-optimal front. Figures 6.30 and 6.31 demonstrate
this matter, for two and three-objective minimization problems, respectively.
With respect to two Pareto-optimal solutions A and B in the figure, any

other solution in the shaded region is non-dominated to both A and B. That
is, if no other Pareto-optimal solutions within the line joining A and B are
found, any solution from the shaded region would be non-dominated with
both A and B and may exist in an MOEA population. In such cases, the
obtained set of solutions may wrongly depict a higher-dimensional surface or
a redundant surface as the obtained Pareto-optimal front. Another study [22]
has also recognized that this feature of problems can cause domination-based
MOEAs difficulty in finding the true Pareto-optimal solutions. It is worth
highlighting here that with the increase in the dimensionality of the objective
space, the probability of occurrence of such redundant solutions is more.
Figures 6.30 and 6.31 illustrate that the region containing such redundant



6 Scalable Test Problems 139

3

1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f

f

Figure 6.29. The SPEA2 population on test problem DTLZ9.

solutions would in general be more for a problem having more objectives. We
term this difficulty associated with the dimension of the objective space as
the problem of ‘redundancy’ in the context of multiobjective optimization.
In handling such problems, MOEAs with the newly suggested ε-dominance
concept [23] introduced by the authors may be found useful. A recent study
[24] has demonstrated that the use of ε-dominance concept is one way to
reduce the redundancy problem. However, this is a serious difficulty in the
context to multiobjective optimization and must be addressed further.

6.9 Conclusions

In this study, we have suggested three approaches for systematically designing
scalable test problems for multiobjective optimization. The first approach
simply uses a translated set of single-objective functions. Although the
construction procedure is simple, the resulting Pareto-optimal front may
be difficult to comprehend. The second approach (we called a bottom-up
approach) begins the construction procedure by assuming a mathematical
formulation of the Pareto-optimal front. Such a function is then embedded
in the overall test problem design so that two different types of difficulties
of converging to the Pareto-optimal front and maintaining a diverse set of
solutions can also be introduced. The third approach (we called the constraint
surface approach) begins the construction process by assuming the overall
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Figure 6.31. The shaded region is non-dominated with Pareto-optimal solutions A
and B (for three objectives).

search space to be a rectangular hyper-box. Thereafter, a number of linear
or non-linear constraint surfaces are added one by one to eliminate some
portion of the original hyper-box. The remaining enclosed region becomes
the feasible search space. A few three-objective test problems are constructed
illustrating the latter two approaches to demonstrate their relative advantages
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and disadvantages. Finally, a number of test problems have been suggested
and attempted to solve using two popular state-of-the-art MOEAs (NSGA-II
and SPEA2) for their systematic use in practice.

In this study, we have not suggested any explicit constrained test problem,
although problems constructed using the constraint surface approach can be
treated as constrained test problems. However, other difficulties pertinent to
the constrained optimization suggested in a two-objective constrained test
problem design elsewhere [25] can also be used with the proposed procedures
for constrained test problem design.
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A Appendix: Another Test Problem Using the
Bottom-up Approach: The Comet Problem

To demonstrate the ease of using the bottom-up approach to design test
problems further, we create one more problem which has a comet-like Pareto-
optimal front. Starting from a widely spread region, the Pareto-optimal
front continuously reduces to a thinner region. Finding a wide variety of
solutions in both broad and thin portions of the Pareto-optimal region
simultaneously becomes a challenging task for any multiobjective optimizer,
including classical methods:

Minimize f1(x) = (1 + g(x3))(x3
1x

2
2 − 10x1 − 4x2),

Minimize f2(x) = (1 + g(x3))(x3
1x

2
2 − 10x1 + 4x2),

Minimize f3(x) = 3(1 + g(x3))x2
1,

1 ≤ x1 ≤ 3.5,
−2 ≤ x2 ≤ 2,
g(x3) ≥ 0.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.28)

Here, we have chosen g(x3) = x3 and 0 ≤ x3 ≤ 1. The Pareto-optimal surface
corresponds to x∗

3 = 0 and for −2 ≤ x∗
1
3x∗

2 ≤ 2 with 1 ≤ x∗
1 ≤ 3.5. Figure 6.32

shows the Pareto-optimal front on the x3 = 0 surface. For better illustration
purposes, the figure is plotted with negative fi values. This problem illustrates
that the entire g = g∗ surface need not correspond to the Pareto-optimal front.
Only the region which dominates the rest of the g = g∗ surface belongs to the
Pareto-optimal front.

We have designed this function and the curve function for a special
purpose. Because of the narrow Pareto-optimal region in both problems, we
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argue that the classical generating methods will require a large computational
overhead in solving the above problems. Figure 6.33 shows the projection of
the Pareto-optimal region in the f1-f2 space of the comet problem. For the use
of the ε-constraint method [6, 26] as a method of generating Pareto-optimal
solutions (usually recommended for its convergence properties), the resulting
single-objective optimization problem, which has to be solved for different
combinations of ε1 and ε2, is as follows:

Minimize f3(x),
subject to f2(x) ≤ ε2,

f1(x) ≤ ε1,
x ∈ D,

⎫⎪⎪⎬
⎪⎪⎭ (6.29)

where D is the feasible decision space. It is well known that the minimum
solution for the above problem for any ε1 and ε2 (≥ 0) is either a Pareto-
optimal solution or is infeasible [26]. The figure illustrates a scenario with
ε2 = −30. It can be seen from the figure that the solution of the above
single-objective optimization problem for ε1 = −15 is not going to produce
any new Pareto-optimal solution other than that obtained for ε1 = −20 (for
example) or for ε1 set to get the Pareto-optimal solution at A. Thus, the above
generating method will resort to solving many redundant single-objective
optimization problems. By calculating the area of the projected Pareto-
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Figure 6.33. Classical generating method with the ε-constraint method will
produce redundant single-objective optimization problems.

optimal region, it is estimated that about 88% of single-objective optimization
problems are redundant in the above three-objective optimization problem, if
a uniform set of ε vectors is chosen in the generating method. Compared to
classical generating methods, MOEAs may show superior performance in these
problems in terms of overall computational effort needed in finding multiple
and well distributed Pareto-optimal solutions. This is mainly because of their
implicit parallel processing, which enables them to quickly settle to feasible
regions of interest, and due to their population approach, which allows them
to find a wide variety of solutions simultaneously with the action of a niche-
preserving operator.
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