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Abstract

The use of quality indicators within the search has become a popular approach in the
field of evolutionary multiobjective optimization. It relies on the concept to transform
the original multiobjective problem into a set problem that involves a single objective
function only, namely a quality indicator, reflecting the quality of a Pareto set approx-
imation. Especially the hypervolume indicator has gained a lot of attention in this
context since it is the only set quality measure known that guarantees strict monotonic-
ity. Accordingly, various hypervolume-based search algorithms for approximating the
Pareto set have been proposed, including sampling-based methods that circumvent
the problem that the hypervolume is in general hard to compute.

Despite these advances, there are several open research issues in indicator-based mul-
tiobjective search when considering real-world applications—the issue of robustness
is one of them. For instance with mechanical manufacturing processes, there exist
unavoidable inaccuracies that prevent a desired solution to be realized with perfect
precision; therefore, a solution in terms of a concrete decision vector is not associated
with just one one fixed vector of objective values, but rather with a range of objective
values that reflect the variance when slightly changing the decision variables. As a
consequence, the optimization model needs to account for such uncertainties and the
search method is required to explicitly integrate robustness considerations.

While in single-objective optimization, there are various studies dealing with the ro-
bustness issue, there are considerably fewer in the multiobjective optimization litera-
ture and none in the context of hypervolume-based multiobjective search. This study
is set in the latter context and addresses the question of how to incorporate robustness
when using the hypervolume indicator within an evolutionary algorithm. To this end,
three common robustness concepts are translated to and tested for hypervolume-based
search on the one hand, and an extension of the hypervolume indicator is proposed on
the other hand that not only unifies those three concepts, but also enables to realize
much more general trade-offs between objective values and robustness of a solution.
Finally, the approaches are compared on two test problem suites as well as on a newly
proposed real-world bridge construction problem.
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1 Introduction

In multiobjective optimization, using the hypervolume indicator to find Pareto-optimal
solutions has become popular in recent years. The reason for the popularity of this mea-
sure is its strict monotonicity with respect to Pareto dominance (Zitzler et al., 2003). As
a consequence hypervolume-based algorithms can be designed to guarantee a theoret-
ical convergence behavior (Brockhoff et al., 2008; Zitzler et al., 2009). Existing multi-
objective techniques that combine Pareto dominance with a specific diversity measure,
e.g., (Deb et al., 2000; Zitzler et al., 2001), often fail in this regard on problems involv-
ing a larger number (e.g., larger than four) of objectives due to cyclic behavior (Wagner
etal., 2007; Zitzler et al., 2008). Although the basic hypervolume-based search approach
has been investigated and extended in different directions, e.g., with regard to the bias
of the indicator (Brockhoff et al., 2008; Auger et al., 2009b; Friedrich et al., 2009), to the
incorporation of user preferences (Zitzler et al., 2007; Auger et al., 2009a), and to the hy-
pervolume calculation resp. estimation (While et al., 2005; Beume and Rudolph, 2006;
Fonseca et al., 2006; Bader and Zitzler, 2008), the issue of robustness has not been ad-
dressed so far to the best of our knowledge. A few studies have used the hypervolume
as a measure of robustness though: Ge et al. (2005) have used the indicator to assess the
sensitivity of design regions according to the robust design of Taguchi (1986); a similar
concept by Beer and Liebscher (2008) uses the hypervolume indicator to measure the
range of possible decision variables that lead to the desired range of objective values;
a study by Hamann et al. (2007) applied the hypervolume indicator in the context of
sensitivity analysis. However, none of these papers deals with integrating robustness
into hypervolume-based multiobjective search.

Robustness becomes an important issue when tackling real-world applications.
Solutions to engineering problems, for instance, can usually not be manufactured arbi-
trarily accurate such that the implemented solution and its objective values differ from
the original specification, up to the point where they become infeasible. Designs which
are seriously affected by perturbations of any kind might no longer be acceptable to a
decision maker from a practical point of view—despite the promising theoretical result.
The corresponding uncertainty due to production variations, which reflects the second
category of uncertainty defined in Beyer and Sendhoff (2007), needs to be taken into
account within both optimization model and algorithm in order to find robust solu-
tions that are relatively insensitive to perturbations. Ideally, there exist Pareto-optimal
designs whose characteristics fluctuate within an acceptable range. Yet, for the most
part robustness and quality (objective values) are irreconcilable goals, and one has to
make concessions to quality in order to achieve an acceptable robustness level.

Many studies have been devoted to robustness in the context of single-objective
optimization, e.g., (Taguchi, 1986; Jin and Branke, 2005; Beyer and Sendhoff, 2007).
However, most of these approaches are not applicable to multiobjective optimization.
The first approaches (Kunjur and Krishnamurty, 1997; Tsui, 1999) to consider robust-
ness in combination with multiple objectives are based on the design of experiment
approach (DOE) by Taguchi (1986); however, they aggregate the individual objective
functions such that the optimization itself is no longer of multiobjective nature. Only
few studies genuinely tackle robustness in multiobjective optimization: one approach
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by Teich (2001) is to define a probabilistic dominance relation that reflects the underly-
ing noise; a similar concept by Hughes (2001) ranks individuals based on the objective
values and the associated uncertainty; Deb and Gupta (2006, 2005) considered robust-
ness by either adding an additional constraint or by optimizing according to a fitness
averaged over perturbations. The following classification categorizes most existing ro-
bustness approaches in the evolutionary computing literature:

A — Replacing the objective value: Among the widest-spread approaches to account
for noise is to replace the objective values by a measure or statistical value reflect-
ing the uncertainty. Parkinson et al. (1993) for instance optimize the worst case.
The same approach, referred to as “min max”, is also employed in other studies,
e.g., in (Kouvelis and Yu, 1997; Soares et al., 2009a,b) . Other studies apply an aver-
aging approach where the mean of the objective function is used as the optimiza-
tion criterion (Tsutsui and Ghosh, 1997; Jiirgen Branke, 1998; Branke and Schmidt,
2003). In Mulvey et al. (1995) the objective values and a robustness measure are
aggregated into a single value that servers as the optimization criterion.

B — Using one or more additional objectives: Many studies try to assess the robust-
ness of solutions x by a measure r(x), e.g., by taking the norm of the variance
of the objective values (Jin and Sendhoff, 2003) or the maximum deviation from
f(x) (Deb and Gupta, 2006). This robustness measure is then treated as an addi-
tional objective (Jin and Sendhoff, 2003; Egorov et al., 2002; Li et al., 2005). A study
by Burke et al. (2009) fixes a particular solution (a fleet assignment of an airline
scheduling problem), and only optimizes the robustness of solutions (the schedule
reliability and feasibility).

C — Using at least one additional constraint: A third possibility is to restrict the
search to solutions fulfilling a predefined robustness constraint, again with respect
to a robustness measures r(x) (Gunawan and Azarm, 2004, 2005; Deb and Gupta,
2005, 2006).

Combinations of A and B are also used; Das (2000) for example considers the expected
fitness along with the objective values f(x), while Chen et al. (1996) optimize the mean
and variance of f(x).

Given these considerations, we investigate in the remainder of this paper how
robustness can be integrated in hypervolume-based multiobjective search. First, we
address the question of how the three existing approaches A, B, and C mentioned above
can be translated to a concept for the hypervolume indicator. Second, we introduce a
novel approach that represents a generalization of the hypervolume indicator unifying
the three approaches, and third we propose different search algorithms implementing
the various ideas. An empirical comparison on different test problems and a real-world
problem provides valuable insights regarding advantages and disadvantages of the
presented approaches.

2 Background

2.1 Hypervolume-based Multiobjective Search

In the following, we consider a multiobjective objective optimization problem f : X —
Z where X C IR" denotes the decision space and #n denotes the number of decision
variables. The decision space is mapped to the objective space Z C R? by d objective
functions (f1(x),..., fi(x)) = f(x); without loss of generality, all objectives are to be
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minimized. Optimization is performed according to a preference relation < on X. The
minimal elements of the ordered set (X, <) constitute the optimal solutions forming
the Pareto set, whose image under f is called Pareto front.

The weak Pareto dominance forms an important preference relation <par on solu-
tions, defined as x =par v 1 Vi € {1,...,n} : fi(a) < fi(b). In the following, weak
Pareto dominance =p,r is used as the standard preference on solutions, however, other
definitions, especially in the presence of uncertainty, are meaningful. In Sec. 3, we will
propose different relations which rank solutions 2 € X not only based on the objec-
tive values f(a), but also on a robustness measure r(a). All relations introduced so far
induce pre-orders and we use the usual definition for the corresponding strict orders
(Harzheim, 2005); for example, Pareto dominance <p,r on two solutions 4,b € X is
givenby a <par b < a =par bAD Apar a.

The above definitions on single solutions can be transferred to an equivalent on
sets (Zitzler et al., 2009) where the search space ¥ = P(X) consists of all possible sets
of solutions A C X, and the objective space Q) = P(Z) is formed by all sets U C Z of
objective vectors . The set equivalent F : ¥ — Q) of the objective function maps a set
of solutions to their objective values, i.e., X — {y|3x € X, f(x) = y}. The preference
relation < on solutions is extended to a set preference < on sets A, B in the following
canonical way:

AxB:VYbeBdacA: a=xb 1)

where again the relation € on the objective space () is given by the isomorphic mapping
of (¥, <) to (Q), €) given by the objective function f. Due to practical limitations, the
search space is usually restricted to elements not exceeding a fixed number of elements
a,ie, Y<o = {A € ¥Y||A| < a} where the relation <<, on ¥<, corresponds to the
restriction of < to Y<,, i.e., <<a:=<[ ¥Y<4. Given such a relation on sets optimization
algorithms strive to find (one of) the minimal elements of ¥ <, for <[ ¥<,).

An important question in the context of optimizing sets is how to refine the Pareto
dominance <par for the large number of cases where neither A <par B nor B <par A
holds, and therefore additional preference information is needed. Indicator functions
represent one possibility to obtain a total relation on sets. They assign eachset A € ¥ a
value representing its quality. Given this value, the relation <y on two sets A, B € Y is
defined as A <1 B :< I(A) > I(B). The hypervolume indicator is one popular choice
of indicator that has received more and more attention in recent years. It measures the
(hyper-)volume of dominated portion of the objective space:

Definition 2.1. Let A € ¥ denote a set of solutions and let r represents a reference point?, let
w : R¥ — R denote a strictly positive weight function integrable on any bounded set. Then
the hypervolume indicator for A is given as

BAR= [ wEeEs wn wE@= 000 Q)

(—00,...,—00)

(09,...,00)
{ 1 Az{z}
n fact, A and U in their most general form are multisets where duplicates of the same solution and
objective vector respectively are allowed. To avoid unwieldy notations, in this paper we stick to proper sets;
the concepts, however, can be extended to multisets as well.
2In the most general definition of the hypervolume indicator, a reference set R is used instead of a single

reference point r. Without loss of generality, throughout this study we consider only a single reference point
r.



with a4 (z) = 14 r)(z) where
H(A,R)={z|3dac€ AJreR : f(a)<z<r} (3)

and 1y, (z) being the characteristic function of H(A, ) that equals 1 iff z € H(A,r) and 0
otherwise.

The reason for the popularity of the hypervolume indicator is that it is up to now
the only indicator that is a refinement of the Pareto dominance, i.e., whenever for two
sets A,B € ¥, A <par B holds, then Ijj(A, R) > Ij(B, R), see (Zitzler et al., 2009). As a
consequence of this property, an improvement of any solution of set A will increase the
indicator value, and the Pareto set A* achieves the maximum possible hypervolume
value. For this reasons, many modern algorithms use the hypervolume indicator as
underlying (set-)preference for search (Igel et al., 2007; Emmerich et al., 2005; Fleischer,
2003; Knowles et al., 2006; Zitzler et al., 2007; Bader and Zitzler, 2009).

Although also useful for mating selection, the main field of application of the hy-
pervolume indicator is environmental selection. The aim thereby is to select from a
population of solutions a subset of predefined size, which will constitute the popula-
tion of the next generation. Normally, hypervolume-based algorithms perform envi-
ronmental selection by the following two consecutive steps:

1. At first, all solutions of the original population are divided into fronts by non-
dominated sorting (Goldberg, 1989; Srinivas and Deb, 1994); while the aforemen-
tioned algorithms use Pareto-dominance as underlying dominance relation, in
principle, however, also other relations can be used as will be demonstrated in
Sec. 3. Following the non-dominated sorting the fronts are, starting with the best
front, inserted into the new population as a whole as long as the number of solu-
tions in the new population does not exceed the predefined population size.

2. The first front A which can no longer be inserted into the new population is there-
after truncated to the number of places to be filled. To this end, one after an-
other the solution x;, is removed which causes the smallest loss in hypervolume
I5(A,R) — I (A\{xw}, R). After reach removal, the hypervolume losses are recal-
culated. At the end, the truncated front is inserted in the new population which
concludes environmental selection.

2.2 Robustness

Robustness of a solution informally means, that the objective values scatter only
slightly under real conditions. These deviations, referred to as uncertainty, are often
not considered in multiobjective optimization. This section shows one possibility to
extend the optimization model proposed above by the consideration of uncertainty. As
source of uncertainty, noise directly affecting the decision variable x is considered. This
results in a random decision variable X?, which is evaluated by the objective function
instead of x. As distribution of X7, this paper considers a uniform distribution:

Bs(x):=[x1 =8, x1+d] X ... X [xy—6,x,+ ] . (4)

The distribution according to Eq. 4 stems from the common specification of fabrication
tolerances. Of course, other probability distributions for X? are conceivable as well; of
particular importance is the Gaussian normal distribution, as it can be used to describe
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many distributions observed in nature. Although not shown in this paper, the proposed
algorithms work with other uncertainties just as well.

Given the uncertainty X7, the following definition of Deb and Gupta (2005) can be
used to measure the robustness of x:

1f2(XP) = fF()
r(x) =
W=
where f(x) denotes the objective values of the unperturbed solution, and f*(X?) de-

notes the objective-wise worst case of all objective values of the perturbed decision
variables X7:

(5)

FOXP) = (max fi(XP),... max fa(XP) ©)

From the multi-dimensional interval B, the robustness measure r(x) may be deter-
mined analytically (see Gunawan and Azarm (2005)). If this is not possible, for instance
because knowledge of the objective function is unavailable, random samples are gener-
ated within Bs(x) and evaluated to obtain an estimate of the robustness measure r(x).

3 Concepts for Robustness Integration

As already mentioned in the introduction, existing robustness integrating approaches
can roughly be classified into three basic categories: (i) modifying the objective func-
tions, (ii) using an additional objective, and (iii) using an additional constraint. To
translate these approaches to hypervolume-based search, one or multiple of the three
main components of hypervolume-based set preference need to be changed:

1. the preference relation is modified to consider robustness—this influences the non-
dominated sorting.

2. The objective values are modified before the hypervolume is calculated.

3. The definition of the hypervolume indicator itself is changed.

Depending on how the decision maker accounts for robustness, the preference re-
lation changes to <. Note, that the relation <., does not need to be a subset of <; in
fact, the relation can even get reversed. For example, provided solution x is preferred
over y given only the objectives x < y, but considering robustness y <., x holds, for
instance because y has a sufficient robustness level but x does not.

The most simple choice of dominance relation is =5, = =par, that is to not con-
sider robustness. This concept is used as reference in the experimental comparison in
Sec. 5. Depending on the robustness of the Pareto set, optimal solutions according to
=par May or may not coincide with optimal solutions according to relations =, that
consider robustness in some way.

In the following, other preference relations, corresponding to the approaches A,B,
and C on page 3, are shown. All resulting relations <., thereby are not total. There-
fore, to refine the relation, is is proposed to apply the general hypervolume-based pro-
cedure: first, solutions are ranked into fronts by nondominated sorting according to
Sec. 2.1; after having partitioned the solutions, the normal hypervolume is applied on
the objective values alone or in conjunction with the robustness measure (which case
applies is mentioned when explaining the respective algorithm) to obtain a preference
on the solutions.
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Figure 1: Partitioning into fronts of ten solutions: a (robustness r(a) = 2), b (2), ¢ (1.4),
d(1.1),e(2), f(1.2),8(1.9), h (.5),i (.9), and j (.1) for the three approaches presented in
Sec. 3. The solid dots represents robust solutions at the considered level of # = 1 while
the unfilled dots represent non-robust solutions.

First, in Sec. 3.1, 3.2, and 3.3, we investigate how the existing concepts can be trans-
formed to and used in hypervolume-based search. Then, in Sec. 3.4, these three con-
cepts are unified into a novel generalized hypervolume indicator that also enables to
realize other trade-offs between robustness and quality of solutions.

3.1 Modifying the Objective Functions

The first concept to incorporate robustness replaces the objective values f(x) =
(fi(x),..., fa(x)) by an evaluated version over all perturbations fF(X?) =
( ff (XP),..., ff (X*)), see Fig. 1(a). For example, the studies by Tsutsui and Ghosh
(1997), Jiirgen Branke (1998), and Branke and Schmidt (2003) all employ the mean over
the perturbations, i.e.,

FX0) = [ Al pxo (x7)dx @)

where pxr (x”) denotes the probability density function of the perturbed decision vari-
able X7 given x. Taking the mean will smoothen the objective space, such that f7
is worse in regions where the objective values are heavily affected by perturbations;
while, contrariwise, in regions where the objective values stay almost the same within
the considered neighborhood, the value f7 differs only slightly. Aside from the altered
objective value, the search problem stays the same. The regular hypervolume indicator
in particular can be applied to optimize the problem. The dominance relation implicitly
changes to < ob=rept With X <pep1 ¥ 1 fP(x) < fP(y).

3.2 Additional Objective

Since the problems dealt with are already multiobjective by nature, a straightforward
way to also account for the robustness r(x) is to treat the measure as an additional
objective (Jin and Sendhoff, 2003; Li et al., 2005; Guimaraes et al., 2006). As for the
previous approach, this affects the preference relation and thereby non-dominated
sorting, but also the calculating of the hypervolume. The objective function becomes
f2° = (f1,..., fa,7); the corresponding preference relation <, is accordingly

X Rao Y& X Spar YA T(x) <r(y) . (8)
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Considering robustness as an ordinary objective value has three advantages: first, apart
from increasing the dimensionality by one, the problem does not change and existing
multiobjective approaches can be used. Second, different degrees of robustness are
promoted, and third, no robustness level has to be chosen in advance which would
entail the risk of the chosen level being infeasible, or that the robustness level could be
much improved with barely compromising the objective values of solutions. One dis-
advantage of this approach is to not focus on a specific robustness level and potentially
finding many solutions whose robustness is too bad to be useful or whose objective
values are strongly degraded to achieve an unnecessary large degree of robustness. A
further complication is the increase in non-dominated solutions resulting from consid-
ering an additional objective, i.e., the expressiveness of the relation is smaller than the
one of the previously stated relation =<, and the relation proposed in the next section.

Fig. 1(b) shows the partitioning according to <,o. Due to the different robustness
values, many solutions which are dominated according to objective values only—that
is according to =par—become incomparable and only two solutions e and ¢ remain
dominated.

3.3 Additional Robustness Constraint

The third approach to embrace the robustness of a solution is to convert robustness
into a constraint (Fonseca and Fleming, 1998; Gunawan and Azarm, 2005; Deb and
Gupta, 2005), which is then considered by adjusting the preference relation affecting
non-dominated sorting. We here use a slight modification of the definition of Deb and
Gupta (2005) by adding the additional refinement of applying weak Pareto dominance
if two non-robust solutions have the same robustness value. Given the objective func-
tion f(x) and robustness measure r(x), an optimal robust solution then is

Definition 3.1 (optimal solution under a robustness constraint). A solution x* € X with
r(x*) and f(x*) denoting its robustness and objective value respectively, both of which are to
be minimized, is optimal with respect to the robustness constraint 1, if it fulfills x* € {x €
X|Vy € X:x =con Yy} where
r(x) <y Ar(x)>n V
X Seon Y1 X Zpary A (r(x) <y Ar(y) <o Vor(x) =r(y) v ©)
r(x) <r(y) Ar(x)>n Arly) >0

denotes the preference relation for the constrained approach under the robustness constraint 1.

This definition for single solutions can be extended to sets according to the follow-
ing definition:
Definition 3.2 (optimal set under a robustness constraint). A set A* € ¥ with |A*| < «
is optimal with respect to the robustness constraint 1, if it fulfills

A" e {Ae¥Y|VBeYwith |B| <wa:A =<cn B} (10)
where <con denotes the extension of the relation =, (Eq. 9) to sets according to Eq. 1.

In the following, a solution x whose robustness r(x) does not exceed the constraint,
i.e., r(x) <, is referred to as robust and to all other solutions as non-robust (Deb et al.,
2002a).



Fig. 1(c) shows the allocation of solutions to fronts according to <¢on. The robust-
ness constraint is set to # = 1, rendering all solutions with r(x) < 1 robust and with
r(x) > 1 non robust, i.e., only h,i, and j are robust. In cases where solutions are con-
sidered robust or share the same robustness (4, b, and ¢), the partitioning corresponds
to weak Pareto dominance on objective values. In all the remaining cases, partition-
ing is done according to the robustness value which leads to fronts independent of the
objectives and containing only solutions of the same robustness r(x).

3.4 Extension of the Hypervolume Indicator to Integrate Robustness
Considerations

The three approaches presented above all allow to consider robustness in a way that
is inherent to the algorithm. The first two approaches (Sec. 3.1 and 3.2) have a—
predefined—way of trading off the robustness with the objective values. On the other
hand, the constraint approach (Sec. 3.3) does not trade-off robustness, but rather op-
timizes with respect to a given robustness constraint. In this section a new approach
is presented, which offers a larger degree of flexibility with respect to two important
points: firstly, the concept allows to realize different trade-offs, which are not inherent
to the concept, but rather can be defined by the decision maker, and secondly, even
when trading-off robustness with objective values the optimization can be focused on
a target robustness level.

The three approaches presented so far rely on modifying the dominance relation
or the objective values to account for robustness. On solutions which are incompara-
ble, the hypervolume indicator is then used to refine the respective dominance relation.
That means, the robustness of solutions is not directly influencing the hypervolume cal-
culation. In the following, a new concept is proposed: first, non-dominated sorting is
carried out as for the regular hypervolume indicator, but according to the robustness
integrating preference relation <,, given by Eq. 8 on page 7. Then, an extension of
the regular hypervolume indicator is calculated. The novel robustness integrating hyper-
volume indicator Ifl’w(A, R) is based on the objective values of solutions in A, but also
on the robustness values of the solutions. An additional desirability function thereby
allows to trade-off robustness and quality of solutions in almost any way, including the
three approaches presented in Sec. 3.1 to 3.3, as well as not considering robustness at
all.

3.4.1 Methodology

The idea behind I/ is to modify the attainment function a 4 (z) of the original hyper-
volume indicator definition, see Def. 2.1, in such a way that it reflects the robustness of
solutions. In the original definition of the attainment function, a 4 (z) is either 0 or 1; for
any objective vector z not dominated by A, the attainment function is zero, while for a
dominated vector z, « 4 (z) = 1 holds. Hence, a solution x € A always contributes 100%
to the overall hypervolume, regardless of the robustness of the solution. To integrate
robustness, the codomain of a4 (z) is extended to all values between 0 and 1. The new
robustness integrating attainment function txﬁ thereby is still zero for any objective vec-
tor z not dominated by A. In contrast to Def. 2.1, however, dominated objective vectors
z are accounted based on the most robust solution dominating z. A desirability func-
tion of robustness ¢ determines the value of solutions, ranging from 0 (no contribution)

9



to 1 (maximum influence)?.

Definition 3.3 (Desirability function of robustness). Given a solution x € A with robust-
ness r(x) € R, the desirability function ¢ : R>g — [0,1] assesses the desirability of a
robustness level. A solution x with ¢(r(x)) = 0 thereby represents a solution of no avail due
to insufficient robustness. A solution y with ¢(r(y)) = 1, on the other hand, is of maximum
use, and further improving the robustness would not increase the value of the solution.

Provided a function ¢, the attainment function can be extended in the following
way to integrate robustness:

Definition 3.4 (Robustness integrating attainment function lXﬁ). Given a set of solutions

A €Y, the robustness integrating attainment function a% : Z — [0,1] for an objective vector
z € Z, and a desirability function ¢ : r(x) — [0,1] is

min r(x if A< {z
af(z) == q)(XGA,f(XKZ( ) tz} (11)
0 otherwise

Hence, the attainment function of z correspond to the desirability of the most robust solution
dominating z; and is 0 if no solution dominates z.

Finally, the robustness integrating hypervolume indicator corresponds to the es-
tablished definition except for the modified attainment function according to Def. 3.4:
Definition 3.5 (robustness integrating hypervolume indicator). The robustness integrat-
ing hypervolume indicator Ifl’w : Y — R>q with reference set R, weight distribution function
w(z), and desirability function ¢ is given by

197 (A) 1= /]R a8 (2)w(z)dz (12)

where A € Y is a set of decision vectors.

In the following, I fl’w is used to refer to the robustness integrating hypervolume
indicator, not excluding an additional weight distribution function to also incorporate
user preference. The desirability function ¢ not only serves to extend the hypervolume
indicator, but implies a robustness integrating preference relation:

Definition 3.6. Let x,y € X be two solutions with robustness r(x) and r(y) respectively.
Furthermore, let ¢ be a desirability function ¢ : r(x) — @(r(x)). Then x weakly dominates y
with respect to ¢, denoted x =y y, iff x <par y and ¢(r(x)) > ¢(r(y)) holds.

Since a solution x can be in relation =<, to y only if x Zpar ¥ holds, <, is a subre-
lation of =par, and generally increases the number of incomparable solutions. In order
that <, is a reasonable relation with respect to Pareto dominance and robustness ¢ has
to be monotonically decreasing as stated in the following Theorem:

Theorem 3.7. As long as ¢ is a (not necessarily strictly) monotonically decreasing function,
and smaller robustness values are considered better, the corresponding robustness integrating
hypervolume indicator given in Def. 3.5 (a) induces a refinement of the extension of <, to sets,
and (b) is sensitive to any improvement of non dominated solutions x with @(r(x)) > 0 in
terms of objective value or the desirability of its robustness.

3The definition of desirabilty function used in this study is compliant with the definition known from
statistical theory, cf. Abraham (1998).
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(a) original set A (b) objective value of x improved (c) robustness of x improved

Figure 2: The robustness integrating hypervolume indicator is sensitive to improve-
ments of objective values (b) as well as to increased robustness desirability (c).

Proof. Part 1: the robustness integrating hypervolume is compliant with the exten-
sion of <, to sets. Let A,B € Y denote two sets with A =,,, B. More specifi-
cally this means, for all y € B Jx € A such that x =par y and r(x) < r(y). Now
let y(z) := argmin,ep f(y)< 7(y). Then 3x;(z) € A with x/,(z) = ¥p(z). This
leads to f(x/,(z)) < f(yg(z)) < zand r(x))) < r(ys). The latter boils down to
p(r(xy)) = @(r(v%)), hence a¥ (z) > a¥(z) forallz € Z, and I};“(A) > I};“(B).

Part 2: the Def. 3.5 is sensitive to improvements of objective value and desirabil-
ity. Let x € A denote the solution which is improved, see Fig. 2(a). First, consider the
case where in a second set A’, x is replaced by x” with r(x') = r(x) and x' <par x.
Then there exists a set of objective vectors W which is dominated by f(x) but not by
f(x). Because of ¢(r(x)) > 0, the gained space W increases the overall hypervolume,
see Fig. 2(b). Second, if x is replaced by x” with the same objective value but a higher
desirability of robustness, ¢(r(x”)) > ¢(r(x)), the space solely dominated by x” has a
larger contribution due to the larger attainment value in this area, and again the hyper-
volume indicator increases, see Fig. 2(c).

Note that choices of ¢ are not excluded for which the attainment function o (z)
can become 0 even if a solution x € A dominates the respective objective vector z—
namely if all solution dominating z are considered infeasible due to their bad robust-
ness. Provided that ¢ is chosen monotonically decreasing, many different choices of
desirability are possible. Here, the following class of functions is proposed, tailored
to the task of realizing the approaches presented above. Besides the robustness value,
the function takes the constraint # introduced in Sec. 3.3 as an additional argument. A
parameter 0 defines the shape of the function and its properties:

(M—1)9+(1+9)H1(;7—r(x)) <0

Tmax

Po(r(x), 1) = { exp (3- %) 0<0<1r(x)>n (13)

1 otherwise

where Hj (x) denotes the Heaviside function?®, and 7,4 denotes an upper bound of the
robustness measure. The factor 3 in the exponent is chosen arbitrarily, and only serves
the purpose of producing a nicely shaped function. By changing the shape parameter

0 x<0
4H1(x):{1 x>0
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Figure 3: Desirability function @g(r(x), ) according to Eq. 13. By changing the shape
parameter 0, different shapes of ¢ can be realized as shown in the cross-sectional plots
@ to ®. The robustness measure (x) has been normalized to 7, such that only solutions
with r(x) < 0 are classified robust.

0, different characteristics of ¢ can be realized that lead to different ways of trading off
robustness versus objective value, see Fig. 3:

@ 6 = 1: For this choice, ¢1(r(x), ) = 1. This means the robustness of solutions is not
considered at all.

@0 < 6 < 1: All solutions with r(x) < # are maximally desirable in terms of robust-
ness. For non robust solutions, the desirability decreases exponentially with ex-
ceedance of r(x) over 1, where smaller values of 6 lead to a faster decay. This
setting is similar to the simulated annealing approach that will be presented in
Sec 4.3.2 with two major differences: first, the robustness level is factored in de-
terministically, and secondly, the robustness level is traded-off with the objective
value, meaning a better quality of the latter can compensate for a bad robustness
level.

® 60 = 0: In contrast to case @, all solutions exceeding the robustness constraint are
mapped to zero desirability, and therefore do not influence the hypervolume cal-
culation. This corresponds to the original constraint approach from Sec. 3.3.

@ —1 < 0 < 0: Negative choices of 8 result in robust solutions getting different degrees
of desirability, meaning only perfectly robust solutions (r(x) = 0) get the maxi-
mum value of 1. The value linearly decreases with r(x) and drops passing over
the constraint 1, where the closer 6 is to zero the larger the reduction. The value
then further decreases linearly until getting zero for 7,,4y.

® 0 = —1: In contrast to @, the desirability ¢ continuously decreases linearly from
®-1(0,-) = 1to ¢_1(max,-) = 0 without drop at r(x) = 7. This corresponds
to considering robustness as an additional objective, see Sec. 3.2.

Calculating the generalized hypervolume indicator in Eq. 12 can be done in a sim-
ilar fashion as for the regular hypervolume indicator by using the ‘hypervolume by
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slicing objectives” approach (Zitzler, 2001; Knowles, 2002; While et al., 2006), where for
each box the desirability function needs to be determined. Faster algorithms, for in-
stance Beume and Rudolph (2006), can be extended to Def. 12 as well; however, it is not
clear how the necessary adjustments affect the runtime.

3.5 Discussion of the Approaches

All three existing approaches mentioned in the introduction can be translated to
hypervolume-based search without major modifications necessary. Modifying the ob-
jective functions offers a way to account for uncertainty without changing the optimiza-
tion problem, such that any multiobjective optimization algorithm can be still applied.
In particular, the hypervolume indicator is directly applicable. However, no explicit ro-
bustness measure can be considered, nor can the search be restricted to certain robust-
ness levels. The latter also holds when treating robustness as an additional objective.
The advantage of this approach lies in the diversity of robustness levels that are ob-
tained. On the flip side of the coin, many solutions might be unusable because they are
either not robust enough or have a very bad objective value to achieve an unessential
high robustness. Furthermore, the number of nondominated solutions increases, which
can complicate search and decision making. Realizing robustness as an additional con-
straint allows to focus on one very specific level of robustness, thereby searching more
targeted which potentially leads to a more efficient search. However, focusing can be
problematic if the required level can not be fulfilled.

All approaches pursue different optimization goals, such that depending on the
decision maker’s preference, one or another approach might be appropriate. The ex-
tended hypervolume indicator constitutes the most flexible concept, as it allows to re-
alize arbitrary desirability functions the decision maker has with respect to robustness
of a solution. All three conventional approaches are thereby special realizations of de-
sirability functions, and can be realized by the robustness integrating hypervolume
indicator.

4 Search Algorithm Design

Next, algorithms are presented that implement the concepts presented in Sec. 3. First,
the three conventional concepts are considered, where for the constraint approach two
modifications are proposed. Secondly, the generalized hypervolume indicator is tack-
led, and an extension of the Hypervolume Estimation Algorithm for Multiobjective
Optimization (HypE), see Bader and Zitzler (2009), is derived such that the indicator is
applicable to many objective problems.

4.1 Modifying the Objective Functions

As discussed in Sec. 3.1, when modifying the objective functions to consider robustness,
any multiobjective algorithm—hypervolume-based algorithms in particular—can be
applied without any adjustments necessary. Hence, for instance SIBEA (Zitzler et al.,
2007) can be employed as it is.

13



4.2 Additional Objectives

Only minor adjustments are necessary to consider robustness as an additional objec-
tive: since the number of objectives increases by one, the reference point or the refer-
ence set of the hypervolume indicator need to be changed. In detail, each element of
the reference set needs an extra coordinate resulting in d + 1 dimensional vectors. Due
to the additional objective, the computational time increases, and one might have to
switch to approximations schemes, e.g., use HypE (Bader and Zitzler, 2009) instead of
the exact hypervolume calculation (Beume and Rudolph, 2006; While et al., 2005).

4.3 Additional Robustness Constraints

In the following, different approaches to consider robustness as an additional con-
straints are discussed. First, in Sec. 4.3.1, a baseline algorithm is presented that opti-
mizes according to Def. 3.2. This approach directly employs the dominance relation
presented in Sec. 3.3. As will be discussed, this approach presents the risk of premature
convergence, which is addressed by three different advanced approaches in Sec. 4.3.2

4.3.1 Baseline Approach

In order to realize the plain constraint approach, as illustrated in Sec. 3.3, in
hypervolume-based search, the only change to be made concerns the dominance rank-
ing, where the relation shown in Eq. 9 is employed instead of =par, see Fig. 1(c). In
the constraint approach as presented in Sec. 3.3, a robust solution thereby is always
preferred over a non-robust solution regardless of their respective objective value. This
in turn means, that the algorithm will never accept a non robust solution in favor of a
more robust solution. Especially for very rigid robustness constraints 7 < 1 this car-
ries a certain risk of getting stuck early on in a region with locally minimal robustness,
which does not even need to fulfill the constraint 7. To attenuate this problem, next
three modifications of the baseline algorithm are proposed that loosen up the focus on
a robustness constraint.

4.3.2 Advanced Methods

The first modification of the baseline approach is based on relaxing the robustness con-
straint at the beginning of search; the second algorithm does not introduce robustness
into some parts of the set which is thus allowed to converge freely even if its elements
exceed the robustness constraint. Finally, a generalization of the constraint method is
proposed that allows to focus on multiple robustness constraints at the same time.

Approach 1 — Simulated Annealing The first algorithm uses the principle of sim-
ulated annealing when considering robustness with respect to a constraint 7. In con-
trast to the baseline approach, also solutions exceeding the robustness constraint can
be marked robust. The probability in this case thereby depends on the difference of the
robustness r(x) to the constraint level 7, and on a temperature T:

_ )1 r(x) <n
Plarrobust) = {M < e~ (r)=m/T  otherwise (14)
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Figure 4: Partitioning into fronts of same ten solutions from Fig. 1 for the two advanced
constraint methods (a), (b), and for the generalized hypervolume indicator. The solid
dots represents robust solutions at the considered level of 7 = 1 while the unfilled dots
represent non-robust solutions. For (a), solutions d, f, and c are classified robust too.

where 1 ~ U(0, 1) is uniformly distributed within 0 and 1. The temperature T is expo-
nentially decreased every generation, i.e., T = Ty - 98 where g denotes the generation
counter, v €]0,1[ denotes the cooling rate, and Tp the initial temperature. Hence, the
probability of non robust solutions being marked robust decreases towards the end of
the evolutionary algorithm. In the example shown in Fig. 4, the solutions d, f, and ¢
are classified as robust—although exceeding the constraint 77 = 1. Since these solutions
Pareto-dominate all (truly) robust solutions, they are preferred over these solutions un-
like in the baseline algorithm, see Sec. 3.3.

Approach 2 —Reserve Approach The second idea to overcome locally robust regions
is to divide the population into two sets: on the first one no robustness considerations
are imposed, while for the second set (referred to as the reserve) the individuals are
selected according to the baseline constraint concept. This enables some individuals,
namely those in the first set, to optimize their objective value efficiently. Although
these individuals are very likely not robust, they can improve the solutions from the
second set in two ways: (i) a high quality solution from the first set gets robust through
mutation or crossover and thereby improves the reserve, (ii) the objective values of a
robust solution are improved by crossover with an individual from the first set. How-
ever, since at the end only the reserve is expected to contain individuals fulfilling the
constraint, one should choose the size of the reserve j to contain a large portion of the
population, and only assign few solutions to the first set where robustness does not
matter.

In detail, the reserve algorithm proceeds as follows. First, the membership of a
solution to the reserve is determined; a solution x is included in the reserve, denoted
by the indicator function sy (), if either it is robust and there are less than  — 1 other
solutions that are also robust and dominate x; or if x is not robust but still is among the
B most robust solutions. Hence

Xesv(x) =1:67(x) < g A {y Zpar x|y € X,r(y) < 15)
r(x) >nAHyly € X,r(y) <r(x)| <
15

nl <
B



Given the membership to the reserve, the preference relation is:

1 erv(x) =1 Aerv(]/) =0
X Zvy e (0 erv(x) =0A erv(]/) =1
X Zpar y otherwise

(16)

For the example in Fig. 4(b) let the reserve size be § = 4, leaving one additional place
not subject to robustness. Because there are fewer solutions which fulfill the robustness
constraint than there are places in the reserve, all three robust solutions are included in
the reserve, see dashed border. In addition to them, the next most robust solution (d)
is included to complete the reserve. Within the reserve, the solutions are partitioned
according to their objective value. After having determined the reserve, all remaining
solutions are partitioned based on their objective value.

Approach 3 — Multi-Constraint Approach So far, robustness has been considered
with respect to one robustness constraint # only. However, another scenario could in-
clude the desire of the decision maker to optimize multiple robustness constraint at the
same time. This can make sense for different reasons: (i) the decision maker wants to
learn about the problem landscape, i.e., he likes to know for different degrees of robust-
ness the objective values that can be achieved; (ii) the decision maker needs different
degrees of robustness, for instance because the solution are implemented for several
application areas that have different robustness requirements, and (iii) premature con-
vergence should be avoided.

The optimize according to multiple robustness constraints, the idea is to divide the
population into several groups, which are subject to a given constraint. In the follow-
ing the baseline algorithm from Sec. 4.3.1 is used as a basis. The proposed concept not
only allows to optimize different degrees of robustness at the same time, but also to put
a different emphasis on the individual classes by predefining the number of solutions
that should have a certain robustness level. Specifically, let C = {(#1,51),..., (7x,51)}
denote a set of | constraints 7y,...,#; where for each constraint the user defines the
number of individuals s; € Ny that should fulfill the respective constraint #; (ex-
cluding those individuals already belonging to a more restrictive constraint). Hence,
c1 + -+ ¢ = |P|, and without loss of generality let assume 77 < 7 < --- < 1;. The
task of an algorithm is then to solve the following problem:

Definition 4.1 (optimal set under multiple robustness constraint). Consider C =
{(m1,81), ---, (qk,s1) }, a set of | robustness constraints 1; with corresponding size s;. Then
aset A* € ¥y, ie., |A*| < w, is optimal with respect to C if it fulfills A* € {A € ¥4 |VB €
Y, : A <c B} where <¢ is given by

A <cB:&V(y,s;) €C:VB €B;, A" € A;;s.t. A" <y, B’ (17)
where <y, denotes the extension of any relation proposed in Sec. 3 to sets, as stated in Eq. 9.

In order to optimize according to Def. 4.1, Algorithm 1 is proposed: beginning with
the most restrictive robustness level %, one after another s; individuals are added to
the new population. Thereby, the individual increasing the hypervolume at the current
robustness level 7; the most is selected. If no individual increases the hypervolume, the
most robust is chosen instead.
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Algorithm 1 Classes algorithm based on the greedy hypervolume improvement prin-
ciple. Beginning with the most robust class, solutions are added to the final population
P’ that increase the hypervolume at the respective level the most, given the individuals
already in P'.

Require: Population P, list of constraint classes C = {(#1,51),..., (11,51)}, with 3 <

1. P = {

2: for i=1to!ldo > iterate over all classes (1;,s;) € C
3: for j =1tos; do > fill current class
4: x' ¢ argmax,cp\ p Iﬂ("m)’w(x UP,R)

5: if Iﬂ("m)’w(x’ UP,R) = Ilﬁ("”f)'w(P’,R) then > x’ has no contribution
6: X'« argminyep pr 7(x) > get the most robust instead
7: P+ P ux

8 return P’

d * ! d08 ' d08
(a) (b) ()

Figure 5: In (a) the affected hypervolume region when removing b is shown, if robust-
ness is not considered (dark gray). Adding the consideration of robustness (values
next to solution labels), the affected region increases (b). Foreseeing the removal of two
other solutions apart from b, other regions dominated by b might also be lost (light gray
areas).

4.4 Optimizing the Generalized Hypervolume Indicator

To optimize according to the generalized hypervolume indicator, the same greedy pro-
cedure as presented in Sec. 2.1 can be used. Thereby, two differences arise:

1. first off, non-dominated sorting is done according to =<, (Def. 3.6) and not with
respect to =par. In Fig. 5, for instance, the solutions d and e are in different fronts
than a for =par (Fig. 5(a)), but belong to the same front for <, (Fig. 5(a));

2. secondly, the hypervolume loss is calculated according to the new indicator, i.e.,
thelossis I/ (A, R) — I}y (A\x, R), see gray shaded areas in Figures 5(a) and 5(b).

In this study, however, we use an advanced selection procedure introduced by
HypE in Bader and Zitzler (2008, 2009). It performs regular non-dominated sorting,
but uses an advanced fitness calculation scheme; rather than considering the loss when
removing the respective solution, this scheme tries to estimates the expected loss taking
into account the removal of additional solutions, see Fig. 5(c).
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Although the exact calculation of this fitness is possible, in this study the focus
is on its approximation by Monte Carlo sampling, as also implemented in HypE. The
basic idea is to first determine a sampling space S. From this sampling space, M sam-
ples then are drawn to estimate the expected hypervolume loss. The derivation of the
necessary adjustments to consider the robustness integrating hypervolume indicator
are rather complicated and are therefore moved to the Appendix A.1. Altogether, the
HypE routine to consider robustness corresponds to the regular HypE algorithm as
listed in Bader and Zitzler (2008, 2009, Algorithm 3) except for the modified fitness cal-
culation. Algorithm 2 shows the new code, where only Lines 15 to 29 differ from the
original definition (Lines 15 to 27).

The advantage of using HypE is that the algorithms allows to also optimize many
objective function in reasonable time. For this reason, in the experimental validation
HypE will be used to optimize according to Ifl’w, where the desirability function ¢
given in Eq. 13 is used.. The parameter 6 of this function is thereby either fixed, or
geometrically decreased in each generation from 1 to 6,4 €]0, 1], i.e., in generation g, 0
corresponds to g = & with y = /0 4.

5 Experimental Validation

In the following experiments, the algorithms from Sec. 4 are compared on two test prob-
lem suites and on a real world bridge truss problem presented in Appendix A.2. The
different optimization goals of the approaches rule out a fair comparison as no single
performance assessment measure can do justice to all optimization goals. Nonetheless,
the approaches are compared on the optimality goal shown in Def. 3.2, which will fa-
vor the constraint approach. Yet, the approach presented in Sec. 3.1 is excluded from
the experimental comparison, since the approach is not based on a robustness measure

r(x).

The following goals will be pursued by visual and quantitative comparisons:

—_

the differences between the three existing approaches (see page 3) are shown;

2. it is investigated, how the extended hypervolume approach performs, and how it
competes with the other approaches, in particular, the influence of the desirability
function is investigated;

3. it is is examined, whether the multi-constraint approach from Sec. 4.3.2 has ad-

vantages over doing independent runs or considering robustness as an additional

objective.

5.1 Experimental Setup

The performance of the algorithms is investigated with respect to optimizing a robust-
ness constraint 7. The following algorithms are compared:

e as a baseline algorithm, HypE without robustness consideration, denoted
HypE 5. rob.;

o Alg,, using an additional objective;

e the constraint approaches from Sec. 4.3, i.e., baseline Alg.o;, simulated annealing
Alggim. ann., reserve approach Algrs,, and multiple classes Alg jasses;

e HypE using the generalized hypervolume indicator, see Sec. 4.4.
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Algorithm 2 Hypervolume-Based Fitness Value Estimation for Ifl’w

Require: population P € ¥, reference set R C Z, fitness parameter k € IN, number
of sampling points M € IN. Returns an estimate of the (robustness integrating)
hypervolume contributions F.

5. procedure estimateHypervolume(P, R, k, M)

6: fori <+ 1,d do > determine sampling box S
7: li = mingep f;(a)
8: Wi =maxXe, . r)erli
9: S [ll,ul] X e X [ld,ud]
10: Vo [T, max{0, (u; — ;)} > volume of sampling box
11: F  Usep{(a,0)} > reset fitness assignment
12 forj < 1,Mdo > perform sampling
13: choose s € S uniformly at random
14: if 3r € R: s <rthen
15: p < |P] > population size
16: UP <+ Uqep, f(a)<s{f(a)} > solutions dominating sample s
17: e < elements of UP sorted such that r(e;) < --- < r(ey)
18: n < |UP| > number of solutions dominating the sample
19: for v=0ton —1do > check all cutoff levels
20: g«n—-v-—1
21: a < Py(p,q,k) > probability of loss according to Eq. 21
22: for f =1ton—vdo > update fitness of all contributing solutions
23: if fequalsn —v then > least robust solution
24: inc < a - (@(r(er))
25: else > slice to less robust solution f + 1
26: inc < - (p(r(ef) — (r(es41)))
27: forj=1to f do > update fitness
28: (a,0) + (a,v) € F where a = ¢¢
29: F'« (F'\(a,v)) U (a,v+inc/f)
30: F <« F
31: return F

So far, the focus was on environmental selection only, i.e., the task of selecting the
most promising population P’ of size a from the union of the parent and offspring
population. To generate the offspring population, random mating selection is used,
although the principles proposed for environmental selection could also be applied to
mating selection. From the mating pool SBX and Polynomial Mutation, see Deb (2001),
generate new individuals.

The first test problem suite used is WFG (Huband et al., 2006), and consists of nine
well-designed test problems featuring different properties that make the problems hard
to solve—like non-separability, bias, many-to-one mappings and multimodality. How-
ever, these problems are not created to have specific robustness properties and the ro-
bustness landscape is not known. For that reason, six novel test problems are proposed
called BZ that have different, known robustness characteristics, see Appendix A.2.2.
These novel problems allow to investigate the influence of different robustness land-
scapes on the performance of the algorithms. In addition to the two test problems
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Table 1: Parameter setting used for the experimental validation. The number of gener-
ations was set to 1000 for the test problems, and to 10000 for the bridge problem.

parameter value  continued

Hmutation 20  population size a 25
Herossover 15 number of offspring u 25
individual mutation prob. 1 number of generations g 1000,/10000
individual recombination prob. 0.5  perturbation & 0.01
variable mutation prob. 1/n  nr. of neighboring points H 25
variable recombination prob. 1 neighborhood size § 0.01

suites, the algorithms are compared on a real world truss building problem stated in
Appendix A.2.2, where also additional results on this problem are presented. For the
robustness integrating HypE, see Sec. 4.4, the variant using a fixed 8 is considered (de-
noted by HypEy), as well as the variant with 6 decreasing in each generation to feng.
This latter variant is referred to as HypEg_ .-

5.1.1 Experimental Settings

The parameters #muytation and #crossover Of the Polynomial Mutation, and SBX opera-
tor respectively, as well as the corresponding mutation and crossover probabilities, are
listed in Tab. 1. Unless noted otherwise, for each test problem 100 runs of 1000 genera-
tions are carried out. The population size « and offspring size y are both set to 25. For
the BZ robustness test problems, see Appendix A.2.2, the number of decision variables
n is set to 10, while for the WFG test problems the recommendations of the authors are
used, i.e., the number of distance related parameters is set to | = 20 and the number
of position related parameters k is set to 4 in the biobjective case, and tok =2 - (d — 1)
otherwise. Except for Fig. 8, two objective are optimized.

In all experiments on the two test problem suites, the extend of the neighborhood
B; is set to & = 0.01. To estimate f“(x,J), for every solution 25 samples are generated
in the neighborhood of x and f¥(x,4) is determined according to Eq. 6. After each
generation, all solutions are resampled, even those that did not undergo mutation. This
prevents that a solution which, only by chance, reaches a good robustness estimate,
persists in the population. For the real world bridge problem, on the other hand, a
problem specific type of noise is used that allows to analytically determine the worst
case, see Appendix A.2.1.

For the Alggin. ann. approach the cooling rate v is set to 0.99. The reference set of the
hypervolume indicator is set to R = {r} with r = (3,5) on WFG, with r = (6,6) on
WFG, and with r = (0,2000) on the bridge problem®. The Algj.sses-approach proposed
in Sec. 4.3.2 uses the following constraints: for BZ (1,...,75) = (.01,.03,.1,.3,00).
For WFG, due to generally higher robustness levels on these test problems, the classes
were set to (11,...,75) = (.001,.003,.01,.03,00). In both cases, the class sizes were
(s1,...,55) = (4,4,6,4,6) which gives a populations size of 24. For the bridge problem,
the classes are set to (.001,.01,.02,0.1, c0) with 6 individuals in each class. The size of

5For this problem, the first objective is to be maximized.
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the bridge is set to 8 decks, i.e., spanning a width of 40 m. For comparison with a single
constraint it is set to 7 = 0.02. For each comparison, 100 runs of 10000 generations have
been performed.

In this paper, two types of uncertainty are used. Firstly, for the test problems,
where x € R" holds, X7 is assumed to be uniformly distributed within Bs(x) according
to Eq. 4. Random samples are generated within B;(x), and evaluated to obtain an
estimate of the robustness measure r(x). Secondly, for the real world application, a
problem specific type of noise is considered as outlined in Appendix A.2.1. For this
second type of noise, along with the structure of the problem, the worst case can be
determined analytically.

5.1.2 Performance Assessment

For all comparisons, the robustness of a solutions has to be assessed. To this end, 10000
samples are generated within Bs. For each objective separately, the 5% largest values
are then selected. By these 500 values, the tail of a Generalized Pareto Distribution is
fitted, see S. Kotz and S. Nadarajah (2001). The method of moments is thereby used to
obtain a first guess, which is then optimized maximizing the log-likelihood with respect
to the shape parameter k and the logarithm of the scale parameter, log(c)®. Given an
estimate for the parameters k and & of the Generalized Pareto Distribution, the worst
case estimate f(x) is then given by

X (x):{ea/k k<o a8)

w
f 1) otherwise

where # denotes the estimate of the location of the distribution given by the smallest
value of the 5% percentile.

The performance of algorithms is assessed in the following manner: at first, a vi-
sual comparison takes place by plotting the objective values and robustness on the
truss bridge problem Appendix A.2.1. The influence of 8 of the robustness integrating
HypE is then further investigated on BZ1. Secondly, all algorithms are compared with
respect to the hypervolume indicator at the optimized robustness level 7. To this end,
the hypervolume of all robust solutions is calculated for each run. Next, the hypervol-
ume values of the different algorithms are compared using the Kruskal-Wallis test and
post hoc applying the Conover-Inman procedure to detect the pairs of algorithms be-
ing significantly different. The performance P(.A;) of an algorithm i then corresponds
to the number of other algorithms, that are significantly better. See Bader and Zitzler
(2008, 2009) for a detailed description of the significance ranking. The performance P
is calculated for all algorithms, on all test problems of a given suite.

In addition to the significance rank at the respective level 7, the mean rank of an
algorithm when ranking all algorithms together is reported as well. The reason for
plotting the mean rank instead of the significance is to also get an idea of the effect size
of the differences—due to the large number of runs (100), differences might show up
as significant although the difference is only marginal. The mean rank is reported not

®Note that the maximum likelihood approximation is only efficient for k > —1/2 (S. Kotz and S. Nadara-
jah, 2001). Preliminary studies, however, not only showed k > —1/2 for all test problems considered, but
also revealed that k is the same for all solutions of a given test problem.

21



20° 20° 20°

10- 10- + 10-
O%0 " 200 © 100 6 %300 © 200 100776 %0 200 0t 6
(a) no robustness (b) additional objective (c) classes

20° 20° 20°

10- 10- 10-

0.+ . | . 1 . + O . | . | . s 0. . | . | . -
300 200 100 0 300 200 100 0 300 200 100 0

(d) reserve (e) constraint (f) HypE 0014

Figure 6: Pareto front approximations on the bridge problem for different algorithms.
Since the first objective of the bridge problem, the structural efficiency, has to be maxi-
mized, the x-axis is reversed such that the figure agrees with the minimization problem.
The robustness of a solution is color coded, lighter shades of gray stand for more ro-
bust solution. The dotted line represents the Pareto front of robust solutions (for (a), no
robust solutions exists).
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(a) HypE with fixed # = 0.8  (b) HypE with fixed 8 = 0.1  (c) HypE with fixed 6 = 0.001

Figure 7: Solutions of 100 runs each on BZ1. The dotted line indicates the Pareto front,
the dashed line the best robust front.

only for the optimized level #, but a continuous range of other robustness levels as well
to get an idea of the robustness distribution of the different algorithms.
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Table 2: Comparison of HypE (91, and HypE ¢ to different other algorithms for the hy-
pervolume indicator. The number represent the performance score P(A;), which stands
for the number of contenders significantly dominating the corresponding algorithm A;,
i.e., smaller values correspond to better algorithms. Zeros have been replaced by “-”.
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BZ1 6 . 5 7 3 4
BZ2 4 7 2 2 4 . . 5
BZ3 . 1 1 2 2 7 3 1
BZ4 2 5 1 3 4 7 . 6
BZ5 4 . 4 . . 7 1 6
BZ6 4 2 4 4 5 1 2
WEFG1 4 1 1 4 7 1 4
WEG2 5 7 1 1 4 1 1
WEFG3 1 2 2 3 3 2 2
WEFG4 6 3 1 3 6 2 2
WEG5 6 1 . 1 1 7 2 3
WEFG6 6 1 3 . . : . .
WEG7 7 . 5 4 3 .
WEFGS8 6 3 . 1 . 2
WEFG9 6 1 1 6 4 5
Bridge 4 1 4 1 3 7 4 6
Bridge 6 3 4 2 . 7 4 6
Bridge 8 3 5 2 1 7 4 5
Bridge 10 3 4 2 . 7 3 5
Bridge12 4 4 2 1 7 2 4
Total 77 57 38 20 30 106 40 69

5.2 Results
5.2.1 Visual Comparison of Pareto fronts

First, the algorithms are compared visually on the bridge problem (see Appendix A.2.1
with 8 decks. Fig. 6 shows the undominated solutions—according to relation x <, ¥
in Eq. 8 on page 7—of 100 runs for algorithms presented in Sec. 4.

As the Pareto-set approximations in Fig. 6 show, a comparison of the different ap-
proaches is difficult: depending on how robustness is considered, the solutions exhibit
different qualities in terms of objective values and robustness. It is up to decision maker
to chose the appropriate method for the desired degree of robustness. The existing three
approaches thereby constitute rather extreme characteristics. As the name implies, the
HypE, . rob. approach only finds non-robust solutions, but in exchange converges fur-
ther to the Pareto optimal front. However, the approaches Algu, Al jzsses, and Algrsy
considering robustness (at least for some solutions), outperform HypE,, ,,. in some
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regions even with respect to non-robust solutions: the Alg,s, finds better solutions for
low values of f,, while the other two approaches outperform the HypE,,, ;.. algorithm
on bridges around f, = 10m. Considering robustness as an additional objective leads
to a large diversity of robustness degrees, however, misses solutions with small values
of fp. This might be due to the choice of the reference point of the hypervolume indi-
cator, and the fact that only 25 solutions are used. The Alg.jssses algorithms optimizes
five robustness degrees, two of which are classified as non-robust—these two are lying
close together because the robustness level of the second last class with 74 = 0.1 does
barely restrict the objective values. Despite—or perhaps because of—the Alg;s, algo-
rithm also keeping non-robust solutions, the robust front is superior to the one of the
Algcon algorithm. The HypE approach with 6 decreasing to .001 advances even further.
The result of the Algsiy. ann. algorithm does not differ much from the Alge, approach
and is therefore not shown.

5.2.2 Influence of the Desirability Function ¢

As the previous section showed, the robustness integrating HypE seems to, at least for
small 8, have advantages over the Alg.,;. Another advantage is its ability to adjust the
trade-off between robustness and objective value quality. Fig. 7 shows the influence of
different 6 on the robustness and quality of the found solutions on BZ1. For this test
problem, the robustness of solutions increases with distance to the (linear) Pareto front,
see Appendix A.2.2. The new indicator allows to realize arbitrary trade-offs between
robustness and objective values, ranging from solutions with good objective value to
very robust solutions. In the present example, only when choosing 8 < 0.1, solutions
robust at the constraint level are obtained. In the following a version with 6 fixed to 0.1
is used (referred to as HypE j¢), and a version with 6 decreasing to 0.001 (referred to as

HypE 0014)-

5.2.3 Performance Score over all Test Problems

To obtain a more reliable view of the potential of the different algorithms, the compar-
ison is extended to all test problems. To this end, the performance score P(.A;) of an
algorithm i is calculated as outline in Sec. 5.1.2. Tab. 2 shows the performance on the six
BZ, the nine WFG, and five instances of the bridge problem. Overall, HypE (1, reaches
the best performance, followed by HypE 15, Alg asses, and Algyso. four algorithms show
a better performance than Algcx.

Hence, not only are two modifications of the constraint approach (Algciassess Algrso)
able to outperform the existing constraint approach, but the robustness integrating hy-
pervolume indicator as well is overall significantly better than Algco.

On the bridge problem, HypE g1, performs best and is significantly better than
the other three algorithms. In case of Alg,sy, and Algeon, it is better in nearly 100% of
all runs. On WEG, Alg;sses Overall performs best. An exception is WFG6-8, where the
other three algorithms are all better. On BZ1, 3 and 5, HypE 1, and Algcon perform
best, on the remaing BZ problems Alg;s, works best.

5.2.4 Application to Higher Dimensions

All algorithms proposed are not restricted to biobjective problems, but can also be used
on problems involving more objectives. Since the runtime increases exponentially with

24



ot
reserve
T
g
@5k
E=)
<
[=}
E .......
54t
[
E | el
3F
additional IR no robustness
objective -
2F

2 3 4 5 7 10 15 20, .30 . 50
nr. of objectives

Figure 8: Average Kruskal-Wallis ranks over all WFG test problems at the robustness
level 7 = 0.01 for different number of objectives.
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the number of objectives, HypE is applied to optimize the hypervolume when facing
more than three objectives. Fig. 8 shows the mean Kruskal-Wallis rank for a selected
subset of algorithms at different number of objectives. The algorithm HypE g3, shows
the best performance except for 10 objectives, where the mean rank of the Algs, ap-
proach is larger (although not significantly). Except for 7 and 20 objectives, HypE gg1,
is significantly better than Algc,. On the other hand, HypE j performs worse than
the constraint approach for all considered number of objectives except the biobjective
case. This might indicate, that the parameter 6 in Eq. 3 needs to be decreased with
the number of objectives, because the trade-off between objective value and robustness
is shifted towards objective value for larger number of objectives. However, further
investigations need to be carried out to show the influence of § when increasing the
number of objectives.

5.2.5 Performance over Different Robustness Levels

In the previous comparisons, solutions robust at the predefined level have been con-
sidered. What happens if loosening or tightening up this constraint? Fig. 9 illustrates
the mean hypervolume rank, normalized such that 0 corresponds to the worst, and 1 to
the best quality. The mean ranks are shown for different levels of robustness p, normal-
ized such that the center corresponds to the level optimized. For levels of robustness
stricter than #, the Alg 555 approach reaches the best hypervolume values. Around 7,
HypE o1, performs best and further decreasing the robustness level, HypE ;f overtakes.
Further decreasing the robustness, Alg,,, and finally HypE,,, ,,. are the best choices.

5.2.6 Optimizing Multiple Robustness Classes

Although the Alg s approach proved useful even when only one of its optimized
classes are considered afterwards, the main strength of this approach shows when ac-
tually rating the hypervolume of the different classes optimized. Tab. 3 list the signif-
icance rankings for the different classes averaged over all test problems of BZ, WFG,
and truss bridge. Doing Alg;,. yuns is significantly worse than the remaining approaches
considered. This indicates, that optimizing multiple robustness levels concurrently is
beneficial regardless of the robustness integration method used. Overall, the Alg jssses
approach reaches the best total significance score (69), the algorithms scores best on all
classes except the one without robustness (7 = c0), where the HypE,,, .. outperforms
the other algorithms.

6 Conclusions

This study has shown different ways of translating existing robustness concepts to
hypervolume-based search, including (i) the modification of objective values, (ii) the
integration of robustness as an additional objective, and (iii) the incorporation of ro-
bustness as an additional constraint. For the latter, three algorithmic modifications are
suggested to overcome premature convergence. Secondly, an extended definition of the
hypervolume indicator has been proposed that allows to realize the three approaches,
but can also be applied to more general cases, thereby flexibly adjusting the trade-off
between robustness and objective values while still being able to focus on a particular
robustness level. To make this new indicator applicable to problems involving a large
number of objectives, an extension of HypE (Hypervolume Estimation Algorithm for
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Table 3: Comparison of the algorithms: Alg;,4. runs, Algao, HYPE . rob., and Alg jzsses- For
each optimized class the sum of the performance score is reported for each of the three
considered problem suites BZ, WFG, and the bridge problem.

Alging.runs — Algao  HyPEuwo b, Algelasses

01 BZ 0 3 3 3

: Bridge 8 10 3 3
.001  WEFG 3 5 8 2
03 BZ 10 4 17 2

: Bridge 8 10 1 4
.003  WFG 8 11 13 6
1 BZ 13 4 17 1

: Bridge 8 10 1 4
.01 WEG 13 15 12 5
3 BZ 10 4 17 2

: Bridge 10 8 0 5
.03 WFG 18 12 12 6
BZ 17 9 3 5

© Bridge 12 6 1 5
WEG 27 11 1 14

Total 177 135 112 69

Multiobjective Search) (Bader and Zitzler, 2008, 2009) has been presented.
The main results of this study can be summarized as follows:

o The three above mentioned approaches each have their advantages: modifying
the objective values allows to use existing approaches without increasing the com-
plexity of the problem; using an additional objective yields to a large diversity
of different degrees of robustness, while using an additional constraint allows to
focus on one desired robustness level.

e The existing constraint approach can be improved by the proposed algorithmic
modifications, in particular by the reserve approach and by optimizing multiple
classes; the latter furthermore illustrates that if all desired classes of robustness
are known, it is better to optimize those concurrently instead of doing multiple
independent runs or to generally consider robustness as an additional objective.

e The novel robustness integrating hypervolume indicator seems to offers many ad-
vantages: first, the concept allows to realize not only the three existing approaches,
but also other arbitrary trade-offs the decision maker expresses. Second, this new
approach—if concentrating on a single robustness constraint—is able to produce
better solutions than the baseline constraint approach.

The investigations presented in this paper are not only valuable in the robustness
context; in fact, they represent general ways to incorporate additional criteria and con-
straints in hypervolume-based search. A promising direction for future research is in
particular how multiple (and not only a single) constraints can be integrated in a gen-
eral manner.
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A Appendix

A.1 HypE for the Generalized Hypervolume Indicator

The complexity of calculating the regular hypervolume is P complete as proven by
Bringmann and Friedrich (2008). The complexity for the generalized hypervolume in-
dicator, see Eq. 12, is even increased.

For this reason, an approximation scheme has to be used to exploit the potential
of the robustness integrating hypervolume indicator for larger number of objectives.
To this end, in the following section HypE, introduced in Bader and Zitzler (2009), is
extended.

Introducing Robustness to HypE HypE needs to be modified in order to be applica-
ble to the robustness integrating hypervolume indicator (Def. 3.5) due to the following
observations. In case of the regular hypervolume indicator, a dominated region is ac-
counted 100% as long as at least one point dominates it. So the only case HypE has to
consider is removing all points dominating the portion altogether. For different points
having different degrees of robustness, the situation changes: even though a partition
dominated by multiple points would stay dominated if one removes not all dominating
points, the robustness integrating hypervolume might nevertheless decrease due to the
non bivariate attainment function. For example, if the most desirable point in terms of
robustness is removed, then the attainment function is decreased and thereby also the
hypervolume indicator value, see Theorem 3.7.

The second difference to the original HypE algorithm concerns the way the contri-
bution is shared among the dominating point. For the regular hypervolume indicator,
all solutions dominating the considered region are equally valuable since they entail
the attainment function being 1. Consequently, the region is split equally among all so-
lutions. For example, if four solutions dominate a region, the fitness of each is increased
by 1/4 of the volume of the region, see Fig. 10(a). For the robustness integrating hy-
pervolume indicator, one has to distinguish different layers of robustness, which are
achieved by subsets of all individuals dominating the region. Consequently, the hy-
pervolume of these layers should only be split among those solutions actually reaching
that robustness level, see Fig. 10(b). In the following, first the question is tackled of how
to distribute the layers of robustness of a dominated portion among solutions. Then the
probability is derived, that each one of these layers is lost.

Distributing Hypervolume among Solutions Let A denote the set of points and
UP C A those solutions, that dominate the region U under consideration. To illus-
trate the extended calculation of the robustness integrating HypE, consider ten points
A = {xy,...,x10}. The first four points UP = {xi,...,x4} dominate the region
U=H({xy,...,xa},{x1,...,x10},R). Additionally, let r(x1) < r(x2) < r(x3) < r(xs).
First, a few simple cases are considered before presenting the final, and rather intrigu-
ing, formula to calculate the fitness of a point. First of all, it is investigated how much
the robustness integrating hypervolume Ifg decreases when removing points from the
set UP and how to attribute this loss to individuals. Assume x; or any other point
which is less robust than x; is removed. In this case, the robustness integrating hy-
pervolume does not decrease at all, since the attainment function depends only on the
most robust point dominating the partition, in our case on x;. Hence, a removal only
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Figure 10: [llustrates how a portion of the objective space U is attributed to the most ro-
bust among four points dominating the region. In case of no robustness considerations,
the solutions all get 1/4 of A(U) as every other solution, see (a). When considering ro-
bustness, different layers of robustness have to be distinguished, see (b): the first, and
most robust, layer is dominated by no point, and is therefore disregarded. Only the
most robust solution dominates the second layer, hence gets the whole slice. The third
layer is dominated by an additional point, and both solutions get half of the share. The
procedure continues up to the layer where every point reaches the necessary robust-
ness, this layer is distributed evenly among all points.

affects the hypervolume, if no other point dominating the partition U at least as robust
as the removed point remains in the population.

On the other hand, lets assume only the most robust solution x; is removed. By
doing this, the hypervolume decreases by A(U) - (¢(r(x1)) — ¢(r(x2))), which is non
zero if the robustness of x; is more desirable than the one of x;. Clearly, this loss has
to be fully attributed to point x1, as no other point is removed. Now lets extend this
to more than one point being removed. Assume points x1, xp, and x4 are removed.
As seen before, the loss of x4 does not affect the hypervolume since x3 (which is more
robust) stays in the set. So in a set of points remaining in the population, the most
robust individual sets a cutoff. For all individuals above this cutoff, i.e., for all indi-
viduals being less robust, the hypervolume does not decrease if these individuals are
removed. The total loss of I};" is A(U) - (¢(r(x1)) — ¢(r(x3))). The question now is,
how to distribute the loss among solutions. The share A(U) - (¢(r(x1)) — ¢(r(x2))) is
only due to xq, hence it is fully attributed to x1. The share between ¢(x;) and ¢(x3) is
dominated by both x; and x;, so the portion is evenly split. This procedure continues
for all robustness levels below the cutoff, see Fig. 10(b).

Probability of Loosing Hypervolume Now that it is known how to distribute the
partition U among points for a particular selection of points, one has to consider all
possible subsets of UP, i.e., subsets of points dominating U, and calculate the prob-
ability that the subset is lost. Let p denote the total number of points, let n := |UP]
denote the number of points dominating U, and let k denote the number of points to
be removed, i.e,, k = p —a. Not all (}) subsets have to be considered separately, but
they can be summarized into classes ¢; with 0 < i < n — 1, where i denotes the po-
sition of the cutoff level, see Fig. 11. More specifically, ¢, contains all subsets where
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Figure 11: Illustration of class cy,: from p points, n dominate the region under consid-
eration. The cutoff point is denoted as v. Besides the considered solution, g points need
to be removed below the cutoff. In total k points are removed. In the example, p =9,
v=2qg=2n=>5andk=>5.

the most robust solution from UP not being removed is the vth least robust solution
among all solutions in UP. For v = 0, all solutions dominating U are removed. For
example, let (x1,. .., Xp) represent different subsets of A, where x; € {0, 1} denotes the
absence or presence respectively of solution x;, and ); = X denotes both cases (don’t
care). In the considered example, cp = (0,0,0,0,%,...,%x), ¢ = (0,0,0,1, x,..., %),
c =(0,0,1,%,%,...,x),and c3 = (0,1, X, X, X, ..., x). Note that as for the regular
HypE calculation, the fitness of a solution is determined under the assumption that
this solution is removed, therefore, the subset ¢4 (no solution removed from UP) is not
possible.

To derive the probability that a subset being removed belongs to the class c;;, con-
sider one particular way this can happen: the first g individuals are removed from
below the cutoff, i.e., are more robust. The remaining k — g points are then removed
from above the cutoff or from the set A\UP. This is one of (¥ ;1) equally probable com-
binations to obtain a cutoff level v, so that the obtained probability has to be multiplied
by (k;1)7 in the end.

A cutoff of v means, besides the considered point 4 = n — v — 1 points are removed
from below the cutoff level. The probability that these g individuals are removed in the
first g removal steps is:

q g9-1 1 q'-(p—1—9q)!
"Tp-1p-1 p—qg (p—1)! (19)

For the remaining k — 1 — g points, any of the p — n individuals not dominating the
partition may be selected, as well as any of the v — 1 individuals above the cutoff, i.e.,
solutions less robust than the cutoff. The cutoff itself may not be removed as this would
change the level v. So the probability for the second portion of points to be picked
accordingly is:

p—n+v—-1 p—n+v-2 p—k  (p—n+v-1)(p—k)!
p—q—1 p—q-2 p—k+1 (p—k=-1)p—q-1)!
7Again, note that the solutions whose fitness needs to be determined, is assumed to be removed and

belongs to the first g individuals, otherwise it would induce no loss in hypervolume. That is why the binomial
coefficient considers the k-1 set instead of k.

P =

(20)
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Multiplying P; (Eq. 19), P, (Eq. 20) and the number of combinations (kgl) gives the
final probability

B k=1\ _(p=k!  (p—q-2)t (k=1)!
Pv<Pf‘7rk>—P1'P2'< q >—(p1)z'q' (p—k—1)! gllk—1—q)!

oppma-2t k-1t e 1 e
=(p-1) -1 (k_l_q>!—(p )i:plj!q—liizl;[ql' (21)

For v = 0 and p = n the last line is undefined, in this case, Py(n,q,k) = 1 holds.

Example A.1. Consider four solutions a,b, c and d with robustness r(a) = 0.8, r(b) = 0.9,
r(c) = 1.05 and r(d) = 1.2. Let the robustness constraint be § = 1, and let the desirability
@ be defined according to Eq. 13 with @ = 0.1 and assume two solutions need to be removed.
Now consider a sample dominated by a, c and d. This gives p = 4, n = 3 and k = 2.
Since only two individuals are to be removed, the probability for having v = 0, i.e, all three
individuals dominating the sample are removed, is 0. The probability for v = 1, i.e., another
solution dominating the sample is removed besides the considered individual, is 1/3. In this
case, the first robustness layer extends from r(a) = .8 to r(c) = 1.05. This gives a value of
1(¢%1(.8) — ¢*1(1.05)) = 0.253 which is completely attributed to a since only this solution
reaches the degree of robustness. The second layer extends from r(c) = 1.05 to r(d) = 1.2
and half of the value % (¢%1(1.05) — ¢*1(1.2)) = 0.079 is added to the fitness of a and c
respectively. The probability for v = 2 is 2/3 (either b or d can be removed, but not c). The
contribution % (¢"1(.8) — ¢%1(1.05)) = 0.506 is completely added to the fitness of a.

A.2 Test Problems

In this appendix two new classes of problems for robustness investigations are pre-
sented: first, in Sec. A.2.1 a real world mechanical problem is stated. Secondly, in
Sec. A.2.2 anovel test problem suite is presented to test the performance of algorithms
with respect to different robustness landscapes.

A.2.1 Truss Bridge Problem

First, the truss bridge problem is stated. Then, a problem-specific evolutionary algo-
rithm is presented.

Problem Statement The task is to build a bridge over a river. Between two banks, n
equally long decks have to be supported by a steel truss®. A uniform load is assumed
over the decks that lead to 7 — 1 equal force vectors, see Fig. 12. The first objective of the
truss problem is to maximize the structural efficiency—the ratio of load carried by the
bridge without elastic failure to the total bridge mass, i.e., costs. The river is considered
environmentally sensitive and therefore no supporting structures are allowed below
the water level. Furthermore, to limit the intervention in the natural scenery, the second
objective is to minimize the rise of the bridge, measured from the decks at the center of
the bridge’.

8The decks are of 5 meters long.

9The height is arbitrarily defined at the middle of the bridge and not over the entire span width, to pro-
mote bridges very different to those optimizing the structural efficiency, and which tend to have the largest
height at the center of the bridge.
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Figure 12: Illustration of the truss bridge problem. Between the two banks with pre-
defined abutments, n decks with equal load have to be supported by a steel truss. As
starting point, the individuals of the evolutionary algorithm are initialized to the shown
Warren truss without verticals. At each bank, two supplementary fixed nodes are avail-
able to support the bridge additionally.

The bridge is considered two dimensional, i.e., all nodes and bar lie within a two
dimensional plane. The slender members (referred to as bars) are connected at revolute
joints (referred to as nodes). Half of the external load on the decks is applied to each of
the two end joints and the weight of the members is considered insignificant compared
to the loads and is therefore omitted. Hence, no torsional forces are active and all forces
on members are tensile or compressive. For detailed information on truss bridges see
W.E. Chen and L. Duan (1999).

In contrast to other well known truss problems, like for instance the ten bar truss
problem (Deb, 2001), the nodes or bars are not specified in advanced, neither are they
restricted to discrete positions like as in Ben-Tal and Nemirovski (2003). In fact, all
kinds of geometries are possible which renders the problem much harder than the
above mentioned ten bar truss problem. The only restriction is, that the predefined
decks can not be changed in any way. In addition to the two endpoints, two additional
fixed nodes at each bank can, but do not need to be, added to the truss!®.

The truss is made only from steel with yield strength 690 MPa and density
7800kg/ m?3. The maximum area of the members is 0.04 m? (radius 0.2 m), and the mini-
mum area is set to 2.5-107> m?, (radius of 5mm). The decks have a fixed cross-sectional
area of 0.02m?.

Evolutionary Algorithm In the following an evolutionary algorithm is presented tai-
lored to the steel truss bridge problem stated above. The algorithm consists of (i) a
general representation which can model all possible bridges, (ii) an initialization of so-
lutions, (iii) the calculation of the objective values, and (iv) different mutation operators
to generate new solutions.

Representation The representation consists of variable length lists. The first list con-
tains all nodes. A node is thereby determined by its position (x,y), the degrees of
freedom of the node (i.e., whether the node is fixed or not), and the load attached to
this node—the latter is non-zero only for the n — 1 predefined joints between the decks.
The second list contains the members that consist of references to the two endpoints,
and the cross-sectional area of the bar. Since the problem is mirror-symmetrical, only

10The additional fixed nodes are located 2.5m below the edge of the abutment and 7.5m to the left and
right of the edge respectively.
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Figure 13: Illustrates the eight mutation operators used to optimize the bridge problem.

the left half of the bridge is represented and solved, see below.

Initialization As a starting point, all solutions are set to a Warren truss without ver-
ticals, and with equilateral triangles. This ensures that the initial bridges are statically
determinate and stable. Of course, the risk increases that the diversity of solutions is
limited unnecessarily. As the results in Sec. 5.2 on page 23 show this is not the case
though—the solutions found vary a lot from the initial Warren truss.

Calculating the Objective Function To determine the first objective function, the
structural efficiency, matrix analysis of the truss is performed; more specifically, the
matrix force method is used to determine the internal forces of all members. Given
their area, the weakest link can then be identified which defines the maximum load of
the bridge. If the bridge is statistically undetermined, i.e., the matrix becomes singular,
the bridge is classified infeasible. No repairing mechanism is used in this case. The
weight of the bridge, on the other hand, is determined by summing up the product of
length, area, and density of all bars. For the weight, the members constituting the deck
of the bridge are also included. Finally, dividing the maximum load by the density
gives the first objective, i.e., the structural efficiency.

The maximum vertical distance of a member or node above the deck level, mea-
sured at the center of the bridge, gives the second objective. The rise of the bridge is to
be minimized.

Because of the symmetry of the problem, only the left half of the bridge is repre-
sented and solved. To this end, all nodes lying on the mirror axis, the center of the
bridge, are fixed in the horizontal dimension. This models the fact, that due to symme-
try, the horizontal component of the force vectors at these nodes is zero. All members
except those on the mirror axis are considered twice in terms of cost, since they have a
symmetric counterpart. On the other hand, the internal load of members on the sym-
metry axis is doubled after matrix analysis, since the right, not considered, half of the
bridge will contribute the same load as the left half.

Mutation Operators Due to the complex representation of the bridges no crossover
but only mutation operators are applied to generate new bridges. In each generation,
one of the following eight mutation functions is used, where the probability of an op-
erator is evolved by self-adaptation (Deb, 2001):
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moving member A member is randomly picked and its endpoints are changed, such
that the member ends up at a different place.

removing member A randomly chosen member is removed. Nodes that are no longer
connected are removed too.

adding member Two nodes are picked randomly and a member is added between
them.

moving nodes The location of a node is moved uniformly within the interval [-
1m,1 m]x[-1m,1 m].

removing node A randomly chosen node is removed; all members connected to that
node are removed as well.

adding fixed node A node from the set of fixed nodes is picked, and connected to a
randomly chosen (non-fixed) node.

breaking triangle and moving node This mutation operator should help the forma-
tion of repeated triangular patterns, which are known to be beneficial because tri-
angles can not be distorted by stress. An existing triangle is chosen, then one of
its three sides is divided in the middle by adding a new node. This node is then
connected by the corresponding median of the triangle. Since this new member
would get zero force, the new node is moved additionally by the operator moving
node.

changing member area This mutation operator randomly picks a member and
changes its area by factor p, where p ~ U(0.5,1.5) is randomly distributed be-
tween 0.5 and 1.5.

Fig. 13 illustrates the eight mutation operators. In addition to these operators, with a
probability of 50% the cross-sectional areas of the bridge are optimized according to
matrix analysis, i.e., each cross-sectional area is decreased as far as the maximum load
carried does not decrease.

Noise Many different sources of uncertainty are conceivable for the truss problem,
e.g., differing location of the nodes due to imprecise construction, varying member
area because of manufacturing imperfection or changing external load distributions.
The present thesis considers random perturbations of the yield strength of members.
The thicker a bar thereby is, the larger the variance of the noise. The reasoning behind
this assumption is that material properties are harder to control the larger a structure
is. The model oyrs ~ oyrs - U(1 — (2)3,1 + (1?)d) is used, where r is the radius of
the bar and oyt denotes the yield strength of a member. As robustness measure, the
maximum deviation according to Eq. 5 is used. However, in contrast to Sec. 5 where
a sampling procedure is used to estimate the worst case, the worst case is determined
analytically: for each member, the yield strength is set to the minimum value according
to the noise model, i.e., 0{¥%s = oyrs - (1 — (r?))d. In all experimental comparisons, &
was set to 100.

A.2.2 BZ Robustness Test Problem Suite

Existing test problem suites like WFG (Huband et al., 2006) or DTLZ (Deb et al., 2002b)
feature different properties—like non-separability, bias, many-to-one mappings and
multimodality. However, these problems have no specific robustness properties, and
the robustness landscape is not known. For that reason, six novel test problems are
proposed denoted as Bader-Zitzler (BZ) that have different, known robustness charac-
teristics. These problems, BZ1 to BZ6, allow to investigate the influence of different
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robustness landscapes on the performance of the algorithms. All, except for BZ5, share
the following simple structure:

Minimize f;(x) = M C(1+8(g(x) 1<i<d
i=1"*1
with g(x) = ” i p Yo ox (22)
i=k+1

subjectto 0<x; <1fori=12,...,n

The first k decision variables are position related, the last n — k decision variables deter-
mine the distance to the Pareto front. The Pareto front is reached for x; = 0, k+1 <i <

n, which leads to 5(g(x)) = 0. The front has has the form (f;(x)f +...+ fd(x)ﬁ)l/ﬁ =
1. The parameter 3 thereby specifies the shape of the Pareto front: for 8 > 1 the shape
is convex, for B = 1 it is linear and for 0 < § < 1 the shape is concave. The distance
to the Pareto front is given by S(g(x)), where g(x) is the mean of the distance related
decision variables xy1, ..., X, (an exception is BZ5, where S is a function of ¢(x) and
the variance 0> = Var({xy,..., x;})).

The distance to the front, i.e., S(g(x)), depends on a fast oscillating cosine function
that causes the perturbations of the objective values and where its amplitude deter-
mines the robustness of a solution. In the following, realization of S are listed, and
choice of parameter f for the six test problems BZ1 to BZ6 and discuss their robustness
landscape.

In the following, let 1 := g(x)
BZ1 For the first test problem, the distance to the front subject to /1 := g(x) is
S(h) = h+ ((1 —h) - cos(10001))* (23)

Fig. 14(a) shows the function S as a function of #, as well as the maximum and mini-
mum within a neighborhood of B; (see Sec. 2.2). As for all BZ test problems, the (best
case) distance to the front linearly decreases with decreasing d. The difference to the
worst case, on the other hand, goes in the opposite direction and increases. This gives
a continuous trade-off between the objective values f(x) (better for smaller values of &)
and the robustness r(x) (better the larger /7). The parameter  is set to 1 which gives a
linear front shape.

BZ2 For the second test problem, f = 2 describing a sphere-shaped Pareto front, the
distance to which is given by:

1
1+ exp(—200(h —0.1))

S(h) = 3h + - ((1 = h) - cos(10001))* (24)

Fig. 14(b) shows the distance as a function of /. As in BZ1, the robustness first decreases
with decreasing . However, around & = 0.1 the exponential distribution kicks in, and
the amplitude of the cosine function becomes very small such that the Pareto front and
its adjacencies are robust. BZ2 tests, whether an algorithm is able to overcome the
decreasing robustness as approaching the Pareto front, or if the solutions are driven
away from the Pareto front to increase their robustness.
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Figure 14: Distance to the front (gray line) as a function of g(x) (abscissa), see Eq. 22.
The solid and dashed line represent the minimal and maximal distance respectively
within the interval [g(x — §), g(x + J)] with § = 0.01.

BZ3 For the third instance of BZ the distance to the front is a product of two cosine

terms:
S(h) = h+ ( cos(50M) cos(1000k))* . (25)

The concave Pareto front (f = 0.5) is non robust. However, by increasing the distance
to the front the term cos(50h) periodically leads to robust fronts, see Fig. 14(c). An al-
gorithm therefore has to overcome many robust local fronts before reaching the robust
front that is closest to the Pareto front.

BZ4 For BZ4, the amplitude of the oscillation term does not change, see Fig. 14(d):
S(h) = h + cos(1000h)? . (26)

Therefore, the robustness does not change with /1. The only way to minimize r(x) (Eq. 5)
is to choose a & for which cos(1000k)? is close to the worst case. The shape of the Pareto
front is convex with g = 3.

BZ5 The distance to the front for the fifth BZ not only depends on the aggregated
variable h, but also on the variance of the distance related decision variables ¢ =

Var({x1,...,x¢}):

S(h,0?) = {h + (1= h) cos(1000k))* 02 < 0.04 -

C\h+ 1.8((1—h) cos(lOOOh))2 otherwise

This gives two different degrees of robustness for any choice of i. Depending on the
location in the objective space, the distance to the Pareto front (given by p = 0.3) there-
fore varies for a given robustness level: it is smaller where ¢ < 0.04 and larger where
the variance exceeds 0.04.
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BZ6 The last instance of the BZ suite uses a step function as distance S(h), see
Fig. 14(f),

1000.0
S(h) = h+1 cos (7(0.01%)}”{) > 09 . (28)
h otherwise

This leads to different robust regions whose width decrease with decreasing distance
to the front. Therewith, the ability of an algorithm to determine the robustness of a so-
lution is tested. For example, when the number of samples to determine the robustness
is small, the edges of a robust region might not be detected and a non-robust solutions
is misclassified as robust. As for BZ2 the Pareto front is a sphere (§ = 2).
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