
Directed Multiobjective Optimization Based on the Weighted
Hypervolume Indicator

DIMO BROCKHOFFa,*, JOHANNES BADERb, LOTHAR THIELEc and ECKART ZITZLERd
aDOLPHIN team, INRIA Lille - Nord Europe, Parc scientifique de la Haute Borne, 40 av. Halley, Bât A,
Park Plaza, 59650 Villeneuve d'Ascq, France
bSwiss Federal Archives, Archivstrasse 24, 3003 Berne, Switzerland
cDepartment of Information Technology and Electrical Engineering, Swiss Federal Institute of
Technology (ETH) Zurich, Zurich, Switzerland
dInstitute for Continuing Professional Education, University of Teacher Education PHBern,
Bern, Switzerland

ABSTRACT

Recently, there has been a large interest in set-based evolutionary algorithms for multi objective optimization. They are based on
the definition of indicators that characterize the quality of the current population while being compliant with the concept of
Pareto-optimality. It has been shown that the hypervolume indicator, which measures the dominated volume in the objective
space, enables the design of efficient search algorithms and, at the same time, opens up opportunities to express user preferences
in the search by means of weight functions. The present paper contains the necessary theoretical foundations and corresponding
algorithms to (i) select appropriate weight functions, to (ii) transform user preferences into weight functions and to (iii) efficiently
evaluate the weighted hypervolume indicator through Monte Carlo sampling. The algorithm W-HypE, which implements the
previous concepts, is introduced, and the effectiveness of the search, directed towards the user's preferred solutions, is shown
using an extensive set of experiments including the necessary statistical performance assessment. Copyright © 2013 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

When approximating the Pareto-optimal set in terms
of a set of trade-off solutions, one solves a set problem
where the search space consists of all possible finite
Pareto set approximations. This is the classical
scenario that has been studied extensively in the field
of evolutionary multi objective optimization (EMO),
and much research has been devoted to the question
of how to define the optimization goal for this type
of set problem. One possibility is to make use of the
so-called quality indicators: they assign each Pareto
set approximation a real value reflecting its quality
and therefore can be used as objective function for
the underlying set problem. The hypervolume
indicator is one of the most popular quality indicators,
and in recent years, several algorithms that directly

use the hypervolume values in the selection phases
to guide the search have been proposed. The reason
for the popularity of this indicator is its property of
being strictly monotonic and thus represents a
refinement of Pareto dominance (Zitzler et al., 2003,
2008). With this property, it is possible to show
that a hypervolume-based multi objective optimizer
converges to the Pareto-optimal set in the limit (Zitzler
et al., 2010), although many EMO algorithms suffer
from cyclic behaviour (Wagner et al., 2007), mainly
because the refinement condition is not met
(Berghammer et al., 2010). As a result, one can
observe a growing interest in hypervolume-based
multi objective search, both from a theoretical and a
practical perspective (see e.g. Fleischer, 2003;
Emmerich et al., 2005; Beume and Rudolph, 2006;
Fonseca et al., 2006; While et al., 2006; Igel et al.,
2007; Bradstreet et al., 2008, 2009; Bringmann and
Friedrich, 2008, 2009a,2009b; Friedrich et al., 2009;
Bader et al., 2010).

The major challenge in this context is the
integration of user preferences to direct the search,
which has gained a recent research interest to improve
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EMO algorithms' search abilities for many-objective
problems (Ishibuchi et al., 2008; Hughes, 2011; Deb
and Jain, 2012). It has been recently shown that the
hypervolume indicator has a natural bias that affects
the outcome of the search process (Auger et al.,
2009c). In certain situations, this bias may be
appropriate, whereas in other situations, the decision
maker may be more interested in specific regions of
the objective space that require a different bias.
Therefore, it is desirable to adjust the optimization
goal according to the preferences of the user, that is,
to provide flexibility with respect to the search
direction that the hypervolume indicator formalizes.
A first concept and proof-of-principle results for this
issue have been presented by Zitzler et al. (2007) where
weight functions have been introduced to define
preference-specific hypervolume indicators. That paper
has shown the potential of the weighted hypervolume
indicator, but did not contain a general and practically
applicable methodology for preference articulation in
hypervolume-based search; in particular, it did not
address the question of how to deal with problems with
more than two objectives. Generalizations of these
articulation approaches have been sketched in a
previous conference publication (Auger et al., 2009a),
but the overall methodology described in the following
has been missing so far.

The present paper presents a generalized metho-
dology for preference-directed hypervolume-based
multi objective search. In contrast to previous results,
we present a complete picture and in particular show
how to concretely use the weighted hypervolume
approach in practice. In particular, the paper contains
the following new results:

• A general approach to change the bias of the
hypervolume indicator is proposed. In particular, a
comprehensive toolkit is described consisting of
useful classes of elementary weight functions and
methods to compose them (Section 5). A large set
of examples demonstrates how this approach is
capable of integrating different types of user prefe-
rences, ranging from preference points to stressing
objectives.

• It is discussed how to use a preference-specific
hypervolume indicator for search by introducing
the new algorithm W-HypE that relies on Monte
Carlo sampling and thereby allows to tackle
problems with an arbitrary number of objectives
(Section 7).

• It is shown that the presented toolkit together with
efficient sampling as provided by W-HypE allows
emulating most relevant classical scalarization

function approaches in a single set-based
optimization framework (Section 6). In other words,
several classical methods to articulate the pre-
ferences of a decision maker are transferred to
population-based multi objective search by providing
the corresponding weight functions.

• An extensive experimental section discusses the
various new concepts by means of visual inspection
and statistical comparisons (Section 8). Both contin-
uous and discrete scenarios are investigated—
showing the generality and effectiveness of the
new approach in practice as well as its scalability
to many-objective problems.

The power of the methodology is its generality: it not
only provides novel ways of preference articulation, but
even allows to model existing scalarizing techniques
such as weighted sum aggregation and desirability
functions and to transfer them to set-based EMO. The
latter aspect opens new perspectives in joining
interactive approaches in the field of multiple criteria
decision making with the set-based approach pursued
in the EMO field.

2. FROM THE HYPERVOLUME TO THE
WEIGHTED HYPERVOLUME

The purpose of this section is to provide the necessary
foundations for the new results described in the forth-
coming sections. In particular, we will describe a basic
indicator-based search algorithm, review the basic
requirements for a suitable quality indicator, define the
weighted hypervolume indicator and review some of
its properties that appear to be relevant for the rest of
the paper.

2.1. Basic terms
As usual, we consider the minimization of a vector-
valued objective function f ¼ f 1;…; ; f nð Þ : X→Rn

where X denotes the decision space, that is, the
feasible set of alternatives for the optimization
problem. The image of the decision space X using
the objective function f is denoted as the objective
space Z⊆Rn with Z = {f(x)|x ∈X}. A single alternative
x ∈X is sometimes named ‘solution’, and the
corresponding objective value z = f(x) ∈Z is named
‘objective vector’.

As we are attempting to minimize simultaneously
the components of a vector-valued objective
function, we need a preference relation that defines
how a solution compares to another one. In this
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paper, we restrict ourselves to the common notion of
Pareto dominance.

Definition 1
A solution a ∈X weakly Pareto dominates a solution
b ∈X, denoted as a≼ b, if it is as least as good in all
objectives, that is, fi(a)≤ fi(b) for all 1≤ i≤ n.
Solution a is better than b or Pareto-dominating b,
denoted as a≺ b, iff a≼bð Þ∧ b≼að Þ.

Equivalently, we can also say that a is better than
b iff fi(a)≤ fi(b) for all 1≤ i≤ n and there exists at
least one objective k where fk(a)< fk(b). A solution
is named Pareto-optimal, if there is no other solution
in X that is better. The set of all Pareto-optimal
solutions is denoted as the Pareto-optimal set and
its image in objective space as the Pareto-optimal
front.

In the recently developed class of preference-
based optimization algorithms, decisions are based
on the fact whether one set of solutions is preferable
to another one. Therefore, the aforementioned
(weak) Pareto dominance is extended towards
populations, that is, sets of solutions (Zitzler et al.,
2003). Naturally, we define a set of solutions A to
weakly dominate another set B iff every solution in
B is weakly Pareto-dominated by at least one
solution in A.

Definition 2
A set of solutions A⊆X weakly dominates a set of
solutions B⊆X, denoted asA≼B, iff (∀b∈B : (∃a∈A :
a≼b)). Set A is better than set B, denoted as A≺B, iff
(A≼B)∧ (B⋠A).

Unary set indicators, such as the hypervolume
indicator, can now be used to represent the quality
of a whole set of solutions by a single scalar value.
This way, decisions in search algorithms can be
based on quality indicators, that is, by comparing
the quality indicators of sets we determine the most
preferred one.

Definition 3
A quality indicator function Imaps each set of solutions
A⊆X to a real number I Að Þ∈R . It refines the Pareto
dominance iff

A≺B⇒ I Að Þ > I Bð Þð Þ

for all sets of solutions A, B⊆X.
The aforementioned refinement condition can be

interpreted as follows: if a set of solutions A is better
than another set B according to Definition 2, then the

quality indicator should also say so, that is, it should
satisfy I(A)> I(B). It has been shown formally by
Zitzler et al. (2010) that a unary quality indicator as
defined in Definition 3 (i) defines a total preorder on
the set of all solution sets and (ii) guarantees that a
set with the maximal indicator value is minimal with
respect to the set Pareto dominance relation according
to Definition 2. In other words, an algorithm based on
such a quality indicator optimizes the objective
functions while respecting the weak Pareto dominance
relation on sets.

2.2. A simple indicator-based search algorithm
On the basis of the previous considerations, we can
define a simple indicator-based search algorithm. It
is modelled after SPAM (Set Preference Algorithms
for Multiobjective optimization), which has been
described by Zitzler et al. (2010). The purpose in the
context of this paper is to start with a simple baseline
algorithm that will be refined in Section 7 in terms of
user preference and search efficiency.

Algorithm 1 can be regarded as a simple hill-climber
that uses the indicator function I to decide whether a
new population P′ is preferable to the previous one.
The heuristicSetMutation-operator as described in
Algorithm 2 determines such a new population based
on the current one P. Only one possible variant is
shown here that starts from k new individual solutions
that are added to the current population P and removes
k solutions from P ∪ {r1,…,rk} in order to achieve a
constant population size of m. In particular, those
solutions, which lead to the smallest loss in the set-
based quality indicator I, are removed one by one.
Other variants are possible, for example removing in
a single step the optimal set of k solutions that leads
to the smallest indicator loss (see e.g. Bringmann
and Friedrich, 2009b), but these subset selection
approaches come along with larger computational
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costs such that the step-by-step procedure is used
more often in practice.

Various indicators have been defined to measure
the quality of a solution set (see e.g. Zitzler et al.,
2003 for an overview), and the hypervolume indicator
and its generalizations are examples of unary
indicators that refine Pareto dominance (Zitzler et al.,
2010). It has been used both for performance
assessment in EMO (Zitzler and Thiele, 1998a) and
for guiding the search in various hypervolume-based
evolutionary optimizers (Zitzler and Künzli, 2004;
Knowles et al., 2006; Beume et al., 2007; Igel et al.,
2007; Zitzler et al., 2007). The following section
reviews some of its basic properties.

2.3. The weighted hypervolume indicator
In its simplest form, the standard hypervolume
indicator is evaluating a solution set by assigning the
‘size of the objective value space, which is covered

by [the set]’ to it (Zitzler and Thiele, 1998b) or in
other words the Lebesgue measure of the objective
space that is dominated by the set and bounded by a
so-called reference point. The left-hand plot of Figure 1
is illustrating this for a three-objective problem.

The weighted hypervolume indicator IwH A;Rð Þ on
the other hand is a generalization of this standard
hypervolume indicator and represents the weighted
volume of the objective space weakly dominated by
a set of solutions A with respect to a given reference
set R consisting of one or several reference objective
vectors.

Definition 4
Let A⊆X be a set of solutions, R⊂Rn a set of reference
points and w : Rn→R≥0 a positive weight function.
The weighted hypervolume indicator IwH A;Rð Þ of A
with respect to R is then defined as

IwH A;Rð Þ ¼ ∫z∈H A;Rð Þw zð Þdz (1)

whereH(A,R) is the dominated space of A regarding R:

H A;Rð Þ ¼ z∈Rn ∃a∈A : ∃r∈R : f að Þ≤z≤rð Þg:jf
The weight function is supposed to be integrable on

any bounded set, that is, ∫ B(0,γ)w(z)dz<∞ for any γ> 0,
whereB(0,γ) is the open ball centered in 0 and of radius γ.

In other words, we integrate the weight functionw(z)
for all points z∈Rn that are enclosed between the image
of the solutions in objective space f(A) and the reference
set R, where ‘enclosed’ is interpreted in terms of weak
Pareto dominance. From another perspective, the

Figure 1. Illustration of the standard hypervolume indicator for a set of three-objective objective vectors (left) and the
weighted hypervolume indicator IwH A; rf gð Þ (volume of the grey shape in the right-hand plot) for a set A of nine solutions
(black dots) of a bi-objective problem. The plot shows an example of a weight function w(z), where for all objective vectors
z that are not dominated by A or not enclosed by r the function w is not plotted. The plot is taken from Figure 1 of Auger et al.
(2012) and updated.
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weighted hypervolume indicator of A can be seen as
the weighted Lebesgue measure λw(H(A,R)) of the
set H(A,R) where the function w(z) weights the
importance of each point z ∈H(A,R).

The graphical representation in the right-hand plot
of Figure 1 illustrates the weighted hypervolume IwH
for a bi-objective problem and a reference set
consisting of one point only. The plot shows the
objective values of nine points on the first two axes
and the weight function w on the third axis. The
weighted hypervolume indicator IwH A;Rð Þ for the set
A of nine points equals the integral of the weight
function over the objective space that is weakly
dominated by the set A and weakly dominates the
reference point r = (r1,r2).

As has been pointed out in Definition 3, an
indicator refines the Pareto dominance if a better set
leads to a larger indicator value. We will prove this
property for the weighted hypervolume indicator as
defined previously and thereby establish its usefulness
in the context of preference-based EMO algorithms,
see for example Algorithm 1.

Proposition 1
The weighted hypervolume indicator IwH A;Rð Þ for
some set of solutions A⊆X with respect to a
reference set R⊂Rn and a weight function w as defined
in Definition 4 refines the Pareto dominance according
to Definition 3 if the following conditions are
satisfied:

• ∀ x ∈X : ∃ r ∈R : (f(x)< r)
• ∫ B(c,γ)w(z)dz> 0 for any c ∈H(X,R), γ> 0, where B
(c,γ) is the open ball with radius γ and center c.

Proof
If A≺B, then ∀ b ∈B : ∃ a ∈A : (f(a)≤ f(b)). Therefore,
we find from the definition of the dominated space in
Definition 4 that H(B,R)⊆H(A,R). As a result, we
can write

IwH A;Rð Þ ¼ ∫H A;Rð Þw zð Þdz ¼
¼ ∫H B;Rð Þw zð Þdzþ ∫D A;B;Rð Þw zð Þdz
¼ IwH B;Rð Þ þ ∫D A;B;Rð Þw zð Þdz

where D(A,B,R) =H(A,R)∖H(B,R) denotes the
difference between the dominance spaces of A and
B. It remains to be shown that the last integral is
strictly positive. Because of the restriction on the
weight function (strictly positive integral in any finite
volume), we just need to show that D(A,B,R) has a
strictly positive volume, that is, ∫ D(A,B,R)dz> 0.

As A≺B, there exists a�∈A : =∃b∈B : f bð Þ≤f að Þ .
Now, we can write

D A;B;Rð Þ ¼ zf j ∃a∈A : f að Þ≤zð Þ∧
∃b∈B : f bð Þ≤zð Þ ∧ ∃r∈R : z≤rð Þg

≥ zf j f a�ð Þ≤zð Þ∧ð∀b∈B : f bð Þ=≤zÞ ∧ ∃r∈R : z≤rð Þg
In order to satisfy the term ∀b∈B : f bð Þ=≤ z, we first

select for each b an index k such that fk(b)> fk(a
*). Such

an index exists because for a�∈A : ∀b∈B : f bð Þ =≤ f að Þ.
Then we make sure that zk< fk(b) holds (and
therefore f bð Þ=≤zÞ by adding the following constraint
for z: zk< fk(a

*) + δk where δk≤ fk(b)� fk(a
*). In other

words, we determine a vector δ= (δ1,…,δn)> 0
by iteratively considering all b∈B, and for all
indices where fk(b)> fk(a

*) holds, we update δk as
δk :=min{δk, fk(b)� fk(a

*)}, starting with all δk=∞. Then
we can write

D A;B;Rð Þ≥ zf j f a�ð Þ≤z < f a�ð Þ þ δð Þ
∧ ∃r∈R : z≤rð Þg

Because of the first condition in Proposition 1,
there exists r*∈R : f(a*)< r*. Therefore, we can replace
the condition ∃ r∈R : z≤ r by z< f(a*) + (r*� f(a*))
where (r*� f(a*))> 0. If we now replace the previously
defined δ by δ′ :=min{δ, r*� f(a*)}> 0, we obtain

D A;B;Rð Þ≥ z f a�ð Þ≤z < f a�ð Þ þ δ′g���
which is a strictly positive volume. □

The previous property ensures that in preference-
based algorithms like Algorithm 1, we are optimizing
towards a final population P that contains Pareto-
optimal solutions, that is, solutions that are not
dominated by any other solution contained in X. On
the other hand, as the size m = |P| is usually much
smaller than the size of the Pareto-optimal set, only a
subset of all non-dominated solutions can be in P at
best. Therefore, any indicator that quantifies the
quality of a population inevitably introduces some
bias, see for example Auger et al. (2009c) for a
discussion about the search bias of the hypervolume
indicator. In case of the weighted hypervolume
indicator, this bias cannot only be controlled but also
be used to encode user preferences in the search
(Auger et al., 2009b). To this end, we need to
understand and quantify the relation between the
weight function w and a subset of Pareto-optimal
solutions P* that has the maximal weighted hyper-
volume indicator value IwH P�;Rð Þ.
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2.4. Weight function and preference information
A thorough characterization of the distribution of
Pareto-optimal solutions, which—as a set—achieve
the maximal weighted hypervolume indicator value,
has been presented for bi-objective scenarios by
Auger et al. (2009b,2009c). Main results and findings
will be summarized in the following where we
restrict ourselves to a bi-objective problem with f ¼
f 1; f 2ð Þ : X→R2 . Moreover, we suppose that there
exists a continuous function g(z1) such that any
objective vector z = (z1,z2) = (z1, g(z1)) for z1 ∈ [zmin,
zmax] is Pareto-optimal. In other words, the function
g(z1) together with the interval [zmin,zmax] describes
the Pareto-optimal front.

We are interested in the following question: let us
suppose that a population of Pareto-optimal solutions
P* has a fixed size of m and maximizes the
hypervolume indicator IwH , that is, it has the maximal
indicator value of all subsets of solutions of size m.
What is the distribution of points on the Pareto-
optimal front? To obtain a closed-form solution, we
suppose that the number of points in the subset P*

approaches infinity, and we are interested in the density
of points δF(z1) on the front, that is, within a small
piece of length h on the front curve at (z1, g(z1)), we find
m � h � δF(z1) solutions inP*. It has been shown byAuger
et al. (2009b) that

δF z1ð Þ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�g′ z1ð Þ�w z1; g z1ð Þð Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g′ z1ð Þ2

q (2)

where we suppose that g(z1) is continuous,
differentiable, its derivative g′(z1) is continuous as
well and w(z1,z2) denotes the weight function of the
weighted hypervolume indicator.

When looking at (2) for an unweighted hyper-
volume indicator, one can notice that the maximal
density is obtained if g′(z1) =� 1 and that the density
approaches 0 if the slope of the Pareto front
approaches 0 or �∞. For illustration purposes,
Figure 2 shows the Pareto front shape g(z1), the appro-
ximate optimal distribution of 20 points (black dots)
obtained by Algorithm 1 and the density δF(z1)
(hatched area) for the unweighted hypervolume
indicator on the continuous test problems DTLZ2
and DTLZ7 (Deb et al., 2005).

Equation (2) characterizes the density δF(z1) of
points that maximize the weighted hypervolume
indicator for a given weight function w(z1,z2) and front
shape g(z1). The result can also be interpreted in the
opposite direction: given user-defined preference,
expressed by a density, the corresponding weight
function can be derived. This allows to model user
preference in a concise manner by optimizing the
weighted hypervolume indicator. Let the desired
density of the user be δF(z1), then

w z1; g z1ð Þð Þ∝ 1þ g′ z1ð Þ2
�g′ z1ð Þ �δF z1ð Þ2: (3)

As an example, Figure 3 shows the distribution of
50 points obtained using an algorithm similar to
Algorithm 1 for two desired densities δF(z1), expre-
ssed in polar coordinates (see Auger et al., 2009b for
details). The resulting density of points comes very
close to the desired density, demonstrating that (2)
not only serves as a better theoretical understanding
of the weighted hypervolume but also is of practical
relevance.

Despite the favourable properties of the weighted
hypervolume indicator in terms of preference-based

0 1
0

1

0 2
0

4

Figure 2. Pareto front shape g(z1), approximate optimal distribution of 20 points (black dots) and the density δF(z1) (dotted
line, in polar coordinates) for the unweighted hypervolume indicator on the continuous test problems DTLZ2 and DTLZ7.
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multi objective search, two main problems need to be
resolved:

• The calculation of the weighted hypervolume
indicator is computationally expensive, especially
in high dimensions and for general weight
functions.

• The step from search preferences towards weight
functions that lead to efficiently computable indi-
cators has not been investigated so far.

The following sections will be devoted to answers
to both open questions.

3. GENERAL CONSIDERATIONS ON THE
CHOICE OF THE WEIGHT FUNCTION

Because of the #P -and W[1]-hardness of the standard
hypervolume calculation (Bringmann and Friedrich,
2008), the computation of the exact hypervolume for
high dimensions and for a large number of points is,
under commonly believed complexity assumptions
such as the exponential time hypothesis, already
computationally expensive in the non-weighted case,
that is, where w=1, (see Bringmann and Friedrich,
2013a). Moreover, the calculation for a general weight
function w involves the additional difficulty of
computing multi dimensional integrals as in (1) for
which often no closed analytical expressions are
known. Although it is sufficient to compute the integral
of the weight function in a rectangle for some of the
exact algorithms (Zitzler, 2001; Knowles, 2002; While

et al., 2006), only a few two-objective weight functions
have been proposed for which such integrals can be
computed analytically (Zitzler et al., 2007). At the
same time, it was argued that a generalization to three
or more objectives is not straightforward. In addition,
the usage in more involved algorithms, such as the
one by (Beum, 2009a) is not straightforward as the
integral has to be computed within a geometric shape
called trellis.

To avoid the previously described difficulties, the
approximative calculation of the hypervolume by
means of Monte Carlo sampling has been proposed
(Everson et al., 2002; Bringmann and Friedrich,
2008; Bader et al., 2010; Bader and Zitzler, 2011). In
its simplest form, N random objective vectors
X1,…,XN are drawn uniformly in a sampling (hyper-)
box, and the sum of all samples, which are dominated
by a solution set A, multiplied by the weight and
normalized by the overall number of samples, is used
as the estimate of the weighted hypervolume indicator
IwH A;Rð Þ:

IwH A;Rð Þ≈ 1
N

∑
1≤k≤N

Xk ∈H A;Rð Þ

w Xkð Þ (4)

Figure 4(b) illustrates the Monte Carlo sampling
approach. In principle, any weight function w :
Rn→R>0 can be sampled with (4), but the accuracy
of the estimation heavily depends on its particular
choice. For example, if the weight function has steep
peaks and is low for a large portion of the objective
space, most of the uniformly drawn samples have
almost no influence on the resulting sum. With
Hoeffding's inequality for bounded random variables

Figure 3. The figure shows 50 solutions (black dots) found by optimizing the weighted hypervolume indicator with weight
functions corresponding to two types of desired densities δ, according to (3). In addition to the obtained 50 solutions, the
corresponding histogram (step-functions) as well as the desired densities (dotted lines) is shown in polar coordinates. The
plots are revised versions from Auger et al. (2009b).
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(Hoeffding, 1963, Eq. 2.6), one can show that the size
of a confidence interval for the right-hand side of (4),
given a fixed confidence level α, is proportional to the
supremum of w.1

A different sampling method that has been first
proposed by Auger et al. (2009a) for the hypervolume
computation leads to an accuracy, which is inde-
pendent of the weight function.2 The appropriately
normalized weight function w is thereby interpreted
as a density function of a probability distribution
(weight density function), and sampling is performed
according to it, see Figure 4. This will result in a larger
number of samples in regions with high weight and
fewer samples in regions with a small influence on
the weighted hypervolume.

If we denote by Xw the random variable with
probability density function w and by Xw

1 ;…;Xw
N its N

independent instantiations, the weighted hypervolume
IwH A;Rð Þ can be approximated by

IwH A;Rð Þ≈ 1
N

Xw
k : 1≤k≤N;Xw

k ∈H A;Rð Þ� ��� ��: (5)

Also here, any density function can be used as w in
principle, but the approach highly relies on the fact
that it is possible to draw samples according to w
efficiently, for example if w is a multivariate normal
distribution. Also if the weight function w is separable
and the corresponding cumulative density functions
for each objective are invertible, w can be sampled

efficiently. We refer to Devroye (1986) for details as
well as for an overview of other distributions that
can be sampled efficiently.

For example, if

w x1;…; xnð Þ ¼
10
3
e
�10
3
x1

x∈ 0; 2½ � � 0; 1:3½ �n�1

0 x∉ 0; 2½ � � 0; 1:3½ �n�1

8><
>:

as shown in Figure 5 for the bi-objective case, we can
sample w by independently drawing X= (x1,…,xn)
uniformly at random within [0,1]n and use the variable
transformation Xw ¼ xw1 ;…; xwn

� �
with xw1 ¼ � 3

10lnx1
and xwk ¼ 1:3�xk for 2≤ k≤ n (see for example
Devroye (1986), page 29).

4. SIMPLE WEIGHT FUNCTIONS

In this section, we present several simple weight
functions, which can be sampled easily and allow the
incorporation of basic user preferences into
hypervolume-based search. We will see later on in
Section 5 how those simple weight functions build
the basis of a more general weight function toolkit,
which makes it possible to formalize even more
preference types with the hypervolume indicator, see
Section 6.

4.1. Stressing objectives with exponential weights
Often, a user might want to optimize preferably a
single objective fs in order to see the possible ranges
of this specific objective, although other objectives
are less important. In other words, the search
algorithm should ‘stress’ the importance of good fs
values in the population. A weight function for such
a scenario is therefore supposed to increase for
decreasing values of fs and have a constant value in

1As the integrands in Eq. (4) are bounded by ai = 0 and the
supremum bi =w

sup of the weight function, the right-hand
side of Eq. 2.6 in the work of Hoeffding (1963) results in
α ¼ e�2Nt2=wsup

and thus an interval size of 2t ¼
wsup� ffiffiffiffiffiffiffiffiffiffiffiffiffi

2
Nln1=α

p
.

2Where the confidence interval size is 2t ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
Nln 1=αð Þp

for a
given confidence level α according to Hoeffding's bound.
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Figure 4. Illustration of the two sampling procedures presented in Section 3 when applied to the weight function shown in
(a). In (b), 500 samples are drawn uniformly within [0,0] times [2,2] and are thereafter multiplied by the corresponding
weight. In (c), samples are generated according to the weight function and do not need to be multiplied by the weight.
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direction of the other objectives in order not to
introduce additional preferences.

In the work of Zitzler et al. (2007), an exponential
weight function was proposed for this purpose whose
marginal distribution for objective fs is an exponential
distribution with rate parameter λ and whose marginal
distributions of the remaining objectives are uniform
distributions

w z1;⋯; ; znð Þ ¼ ∏i≠s bui � bli
� �� ��1

λe�λ zs�blsð Þ z∈B
0 z∉B

(

where B ¼ bl1; b
u
1

� 	�…� bln; b
u
n

� 	
denotes the space

with non-zero probability density. The spread of the
distribution is thereby inversely proportional to the
parameter λ, that is, the smaller λ, the steeper the weight
function increases at the border of the objective space.

Figure 5 shows such a weight function for a bi-
objective problem when stressing f1 with an exponential
distribution (λ=10/3) while using a uniform distribution
in the interval [0,1.3] in the second objective
B ¼ bls; b

u
s

� 	� bl2; b
u
2

� 	 ¼ 0;∞½ � � 0; 1:3½ �� �
.

4.2. Guiding the search towards preference points
with normal distributions
Another way of specifying preferences is to set
preference points (Wierzbicki, 1999). In brief, a
preference point is a user-selected point in objective
space that would be sufficient for a decision maker,
that is, once a (Pareto-optimal) point dominating the
preference point is obtained, the search can be stopped.
If the preference point is infeasible, points as close as
possible to the preference point should be obtained.

In terms of the weighted hypervolume, the weight
w(z) at a certain point z in objective space should
increase if z becomes closer to the preference point.

A multivariate normal distribution with the preference
point as its mean is one possibility to articulate
preferences towards a preference point and has been
presented by Auger et al. (2009a). The multivariate
normal distribution has the advantage that we can
easily sample points according to this weight function
for problems with a high number of objectives.

We denote the preference point as m∈Rn and, in
addition, define a direction t∈Rn as well as two
standard deviations σϵ;σt∈R to articulate preferences
towards m with the weight

wpref zð Þ ¼ 1

2πð Þn=2jCj1=2
e�

1
2 z�mð ÞTC�1 z�mð Þ: (6)

Here, C :¼ σ2
ϵIþ σ2

t tt
T=∥t∥2 is the covariance

matrix of the normal distribution and |C| its
determinant. The equi-density contour lines of such a
weight function are ellipsoids whose principal axis
are t or orthogonal to t, see Figure 6. The lengths of
these axes are determined by the two given standard
deviations σt and σϵ. The variance σt influences the
range of objective vectors in direction of t that are
affected by the weight function, whereas the variance
σϵ influences the range of the weight function in
direction of the remaining n� 1 axes that are
perpendicular to t.

4.3. Preference regions with uniform weights
If the search should be concentrated on certain regions
of the objective space, it makes sense to use a
piecewise constant weight function. A higher
(constant) weight is assigned to the preferred region
than to the rest of the search space. To be able to
sample easily the corresponding distribution, it is
useful to restrict the usage of such a uniform
distribution to preference regions of rectangular
(in bi-objective problems) or (hyper-)cuboidal shapes
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Figure 5. Simple weight functions: objective stressing (exponential).
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(in higher dimensions). Figure 7 shows an example of
such a weight function.

4.4. Guiding single solutions with dirac-type
weights
As a limit case, one can use dirac-type weight
functions, which have the value 0 almost everywhere
but whose integral has a non-zero value (see e.g.
Zitzler et al., 2007). If such a weight function is a
sum of one-dimensional dirac-type functions, then
only solutions close to the objective vectors with
non-zero weight have a non-zero hypervolume
contribution. For example, in case of a one-
dimensional dirac-type function, see Figure 8, only a
single solution has a positive hypervolume
contribution,3 and therefore, an EMO method that
uses the corresponding indicator exclusively will lose
diversity among the solutions and tends to find a
single solution. In order to guide the search towards

the preferred region in the objective space and to
allow for efficient sampling, dirac-type functions
should be used together with a smoothing operator
as described in Section 5.

5. A WEIGHT FUNCTION TOOLKIT ALLOWING
EFFICIENT SAMPLING

In the following, we propose a general weight
function toolkit that allows the formalization of
user preferences with the weighted hypervolume
indicator in an easy way. Section 6 provides
several examples on how the weight function
toolkit can be employed to articulate classical
preference relations with the weighted hypervolume
indicator approach.

To illustrate the main components of the weight
function toolkit—leading from a user preference to a
weight function—we use a simple artificial example
of optimizing the design of a noise protection system:
the bi-objective problem consists in minimizing the
sound pressure p, which can be lowered to 0 with
additional costs, see Figure 9(a).
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Figure 7. Simple weight functions: uniform.

3The ridge with positive weight function can only intersect
with one of the pairwisely non-dominated sets of objective
vectors solely dominated by a single solution.
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Figure 6. Simple weight functions: preference point (normal distribution).
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5.1. Transforming the objective functions
In the artificial example, the scaling of the pressure
may not reflect the intuition of the decision maker.
Usually, a logarithmic unit of measurement that
expresses the magnitude of sound intensity relative
to a reference level is used, namely, decibel. This
way, the interest of a decision maker will not be
focused on a particular fraction of the decision space.
Figure 9(b) visualizes the rescaling of the first
objective. In the context of the desirability function,
see Section 6.3, we will discuss the relation between

weight functions for the hypervolume indicator and
objective space scaling.

5.2. Choosing a weight function
The main step when formalizing user preferences in
terms of the weighted hypervolume is to choose the
underlying weight function. In principle, any weight
function can be used here, but according to the
discussion in Section 3, we recommend to use a
weight function that can be sampled efficiently such
as the uniform weight in a rectangle in Figure 9(c).
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Figure 8. Simple weight functions: ridge function.
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Figure 9. Toolkit example of an artificial noise protection design.
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As choosing weight functions can be difficult to an
unexperimenced decision maker, Section 6 will later
on propose several example weight functions, which
simulate classical preference articulation methods
with the weighted hypervolume indicator approach.

5.3. Smoothing
As has been mentioned in Sections 4.3 and 4.4, uniform
or dirac-type weight functions will usually be
smoothened in order to (i) guide the optimization
towards the preferred region in objective space and (ii)
in order to obtain a reasonable number of distinct
solutions in the optimized population. This smoothing
can be achieved by convolving suitable weight density
functions

wconv zð Þ :¼ w1 zð Þ�w2 zð Þ…�wq zð Þ (7)

where q denotes the number of weight functions and
wi(z) represents the ith weight density function. The
convolution operator is defined as

wi�wiþ1ð Þ zð Þ ¼ ∫Rnwi yð Þwiþ1 z� yð Þdy: (8)

As the convolution operator is associative, (7) can
be calculated iteratively.

Although any number of weight functions can be
combined by convolution, we focus on the convolution
of two weight density functions wconv :=wo(z) *ws(z),
where we view the result wconv as a modified version
of wo. In other words, ws(z) is tailored to ‘smooth’
the original weight function wo(z). This is particularly
useful, when wo(z) is zero almost everywhere (i.e. the
set of objective vectors z with positive weight is a null
set), as it is the case for ridges or the dirac delta. Such
dirac-type functions often arise when translating
classical methods to hypervolume-based search, such
as weighted sum, Tchebycheff, ϵ-constraint, weighted
metrics or goal programming, see Section 6. Also
within our noise protection system example, the
convolution of the uniform weight with a normal
distribution smoothens the distribution of points
found, see Figure 9(d).

Sampling a convoluted weight density functionwconv

can be easily performed (see also Devroye, 1986): if the
weight functions wi are interpreted as probability
densities, then the convolution according to (7)
corresponds to the probability density of the sum
X1 +…+Xq of independent random samples Xi whose
respective density is wi. In other words, in order to
obtain one sample, one first draws a sample from each
of the convoluted densities and then computes their
sum. Note that any wi in (7) can be a linear combination

according to (9) and any convoluted weight function
wconv can be used in a linear combination.

5.4. Combining multiple weight functions
A wide range of different user preferences can be repre-
sented by combining (convolved) weight functions. We
here present only one possibility, namely, to combine q
weight density functions w1(z),…,wq(z) by a linear
combination

wlc zð Þ ¼ p1w1 zð Þ þ…þ pqwq zð Þ (9)

where the pi are positive real numbers that sum up to
one, that is, p1 +…+ pq = 1.

In order to sample the weight density function wlc(z)
constructed according to (9), random samples can be
generated using the following steps: at first, select a
weight function i by generating a random integer with
probability vector (p1,…,pq). Then generate a sample
with density wi(z). In other words, we sample each of
the densities wi independently with probabilities pi and
take the union of all generated samples.

Figure 9(e) exemplarily shows the combination of
the smoothed uniform weight of Figure 9(d) with a
normal distribution to additionally obtain solutions
close to a preference point.

6. FORMULATING CLASSICAL PREFERENCE
ARTICULATION APPROACHES WITH THE
WEIGHTED HYPERVOLUME INDICATOR

TOOLKIT

Several classical approaches to formalize user pre-
ferences exist. For three examples, namely, the
Tchebycheff approach, ε-constraints and desirability
functions, we show here how those preference models
can be integrated within one and the same set-based
approach in the context of the weighted hypervolume
indicator.

6.1. Tchebycheff approach
The weighted Tchebycheff approach, see Miettinen
(1999) for details, consists of specifying a weight Wi

for each objective (with ∑ iWi= 1) and minimizing

max
i¼1;…;n

Wi� f i xð Þ � z�i
�� ��� �

(10)

where z� ¼ z�1;…; z�n
� �

is denoted as the ideal point
and x ∈X.

We can articulate the weighted Tchebycheff problem
in the weighted hypervolume scenario by using a ridge-
type weight function, which is non-zero only along the
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line z* + t �W with W= (W1,…,Wn) and t∈R and zero
elsewhere, see Section 4.4. Using this weight function
in a multi objective optimizer with hypervolume-based
selection directly corresponds to assign to the solution
z with the smallest value in (10) a positive fitness and
to all other solutions a fitness of zero. Typically, this
approach results in a very low diversity and yields only
one non-dominated solution in the final population. In
order to obtain a solution set instead of single solutions,
we therefore recommend to smooth the previous weight
function with a normal distribution as described in
Section 5 such that all objective vectors in a population
have a non-zero influence on the weighted hypervolume
indicator, see Figure 10.

6.2. ε-Constraints
Another classical way of incorporating preferences is
to minimize a certain objective fl as the solutions are
constrained by upper bounds εi∈R in all other
objectives, see again Miettinen (1999) for details. In
the weighted hypervolume scenario, such an ε-
constraint problem can be articulated by a weight
function of the form

w zð Þ ¼ ∏
1≤i≤n
f i∈=L

σ ϵi � zið Þ (11)

where σ(x) = 0 if x< 0 and σ(x) = 1 otherwise. The
previous construction of a weight function yields
positive-weighted hypervolume values only for
solutions that are feasible. In particular, we allow here
for optimizing several objectives in a set L ⊂ {f1,…,fn}
simultaneously, whereas all other objectives f i=∈L are
constrained to values ≤ εi.

Again, we recommend the smoothing with a normal
distribution as described in Section 5 to obtain
sufficiently diverse sets of solutions. To disregard infea-
sible solutions, we recommend to keep the weight
function zero if the constraint is not fulfilled by using
a negative normal distribution as smoothing function.
Although some parts of the objective space will be then
assigned a weight function that is zero, the non-
dominated sorting in the fitness assignment scheme
proposed in Section 7 allows that the search can be
driven towards the feasible region.

6.3. Desirability functions
Specifying user preferences in terms of desirability
functions (Harrington, 1965) is usually performed by
mapping the objective vectors z= (z1,…,zn)∈Z via
one so-called desirability function φi(zi) per objective to

φ zð Þ ¼ φ1 z1ð Þ; φ2 z2ð Þ;…; φn znð Þð Þ (12)

and by maximizing the scalarization s zð Þ :¼ ∏n
i¼1φi zð Þ.

Here, we restrict ourselves to strictly monotonic
functions φi : R→ 0; 1½ �, fi(x)↦φi(fi(x)). Figure 13 gives
an example that is later on used in the experiments, but
any strictly monotonic function such as proposed in the
original work of Harrington (1965) can be used.

With respect to this preference model, it is worth to
mention the work by Wagner and Trautmann (2010)
where an approach is presented in which the objective
functions are transformed by means of desirability
functions as in (12) and the algorithm SMS-EMOA is
used to optimize the transformed objectives. As the
SMS-EMOA aims at maximizing the (standard)
hypervolume indicator, Wagner and Trautmann (2010)
argue qualitatively how the transformation of the
objectives changes ‘the shape of the Pareto front in
desirability space’ and, as a result, how the final
distribution of points on the front is affected in terms
of the density result in (2) (Auger et al., 2009c, 2012).
In the following, we will see that the transformation of
objectives via strictly monotonic desirability functions
can also be seen in the context of the weighted
hypervolume, which allows us to characterize the

(a) Tchebycheff ridge-type weight function.
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(b) Convolved ridge-type weight function.

Figure 10. Illustration of Tchebycheff approach.
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influence of desirabilities on optimal μ-distributions
quantitatively.

In fact, Theorem 1 presented in Appendix A proves
that transforming the objective functions fi(x) to φi(fi(x))
with strictly monotonically increasing φi and using the
unweighted hypervolume indicator is equivalent to
using the weighted hypervolume indicator without
transforming the objectives but with

w zð Þ ¼ ∏
n

i¼1
φ′i zið Þ (13)

as weight function. As the desirability functions are, by
definition, to be maximized and we assume
minimization of the original objectives, monotonous
desirability functions are decreasing and the
corresponding weight function wd(z) for a desirability
function φ(z) is therefore wd zð Þ ¼ ∏n

i¼1 � φ′i zið Þ .
Figure 11 gives an example of such a weight function
resulting from a strictly monotonous desirability
function defined later on in (21). The main difference
to the traditional approach is here that the weighted
hypervolume allows to find a set of solutions instead
of only the one solution, which maximizes s(z).

The new result together with (2) also allows to
better understand desirability functions in the context
of hypervolume-based search: it is not only that the
influence of the desirability functions on the optimal
distributions of μ points can be given explicitly but
it also follows that, for example, linear scalings of
the objectives do not change the optimal density.

7. OPTIMIZING THE WEIGHTED
HYPERVOLUME INDICATOR

Now, given the weighted hypervolume indicator
IwH A;Rð Þ with a specific weight function w and a

specific reference set R, the question is how to
employ it within a search algorithm. As long as the
weight function can be integrated analytically, there
is little difference to the original hypervolume
indicator: the indicator values can be computed
according to the ‘hypervolume by slicing objectives’
principle (While et al., 2006; Emmerich and
Fonseca, 2011) where the dominated portion of the
objective space is split into hyperrectangles the
volumes of which are summed up (Bader and
Zitzler, 2011); for each hyperrectangle, now, the
integral of the weight function over this hype-
rrectangle replaces the original plain volume. In this
case, the hypervolume calculations are not
expensive if the number of objectives is low
(Fonseca et al., 2006; Emmerich and Fonseca,
2011) and the simple indicator-based search
algorithm presented in Section 2.2 can be used for
searching for a Pareto set approximation with
maximum IwH A;Rð Þ value—or any other regular
hypervolume-based search technique (e.g. Emmerich
et al., 2005; Igel et al., 2007).

From a practical point of view, though, a more
flexible scheme is desirable as the discussions in
Section 3 indicate; weight functions that are useful
for preference articulation can often not be integrated
analytically. Furthermore, the exact computation of
the indicator values restricts the applicability of the
search engine to problems with few objectives only
(cf. Bringmann and Friedrich, 2008). What we
present in the following is an approach that addresses
both issues simultaneously. The idea is to estimate
the weighted hypervolumes by means of Monte
Carlo sampling instead of computing them exactly;
thereby, high-dimensional objective spaces as well
as arbitrary weight functions become feasible. The
algorithm, W-HypE, which is presented in the
following, is an extension of the Hypervolume
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Figure 11. Weight function w zð Þ ¼ ∏n
i¼1

bi

π 1þ b2i zi � aið Þ2

 � for simulating the desirability function approach with strictly

monotone desirability functions as given by ((21)) where a1 = 1.1, a2 = 0.8, b1 = 7 and b2 = 5.
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Estimation Algorithm for Multiobjective Opti-
mization (HypE) described by Bader and Zitzler
(2011) for the weighted hypervolume indicator. The
main loop of W-HypE corresponds to Algorithm 1.
However, the heuristic set mutation procedure of
Algorithm 2 is replaced by the one outlined in
Algorithm 3, which differ in two respects:

1 W-HypE employs a non-dominated sorting
(Goldberg, 1989; Srinivas and Deb, 1994) first such
that the hypervolume-based selection only needs to
be carried out for the last front that not completely fits
into the new population—this scheme is used by
most hypervolume-based search algorithms and
ensures a finer grained ranking than the simple
scheme in Algorithm 2.

2 The fitness δp of an individual p in W-HypE is (i)
determined slightly differently and (ii) estimated
and not calculated exactly.

We first describe the fitness assignment scheme of
W-HypE, before we discuss how the fitness values
can be estimated using Monte Carlo sampling. As
mentioned in the introduction, the focus lies here on
presenting the complete picture of W-HypE, which
combines the same fitness assignment scheme of
HypE (Bader and Zitzler, 2011) with the hyper-
volume sampling ideas of Bader et al. (2010) and
Auger et al. (2009a).

7.1. Fitness assignment scheme
Most hypervolume-based multi objective optimizers
use the loss of hypervolume as a fitness measure to
assess the importance of an individual p in the
population P. More precisely, the fitness δp of p is
computed as IwH P;Rð Þ � IwH P∖ pf g;Rð Þ, which graphi-
cally can be interpreted as removing the hyper-
rectangle H({p},P,R) from the dominated area, see
Figure 12 for an example; here, the hyperrectangle

H A; P;Rð Þ :¼ H A;Rð Þ∖H P∖A;Rð Þ (14)

represents the portion of the objective space that is
jointly weakly dominated by the solutions in a
solution set A⊆ P and not weakly dominated by any
other solution in P.

As long as only a single solution needs to be
removed from the current front in Steps 13 to 16 in
Algorithm 3, this fitness scheme reflects the optimal

Figure 12. Illustration of how the dominated space is
partitioned into hyperrectangles. The population P contains
three individuals p, a and b, and the reference set R consists
of a single reference point r.

Figure 13. The desirability function according to (21) used
in this study.
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choice. However, if several solutions are to be selected
for removal (one by one), then the importance of an
individual also depends on the other individuals that
are deleted. Consider for instance the case that p and
afterwards a are removed from the population; this
means the hyperrectangles H({p},P,R), H({a},P,R)
and H({p,a},P,R) vanish. Overall, the hypervolume is
reduced by the sum of the volumes of these three
hyperrectangles where λw(H({p},P,R)) can be attributed
to p, λw(H({a},P,R)) to a, and λw(H({p,a},P,R)) half to p
and half to a (because if either is kept the hyperrectangle
will still be part of the dominated space).

These considerations lead to the idea of computing
the expected loss in hypervolume that can be attributed
to an individual p, if p together with o� 1 other
solutions in P is removed (Bader and Zitzler, 2011).
First, generalizing the previous concept for a given
subset A with |A| = o and p∈A, the hypervolume loss
δAp attributed to p when A is removed amounts to

δAp ¼ ∑
B⊆A;p∈B

1
Bj jλw H B; P;Rð Þð Þ: (15)

Certainly at Step 16 in Algorithm 3, it is not clear
which further o� 1 solutions are chosen for removal
in the subsequent steps, that means A is unknown.
Therefore, we only can approximate the true δAp by
assuming that the o� 1 other solutions are chosen
uniformly at random and take the average over all
possible sets A:

δ̂p ¼ 1
Pj j � 1

o� 1

�  ∑
A⊆P; Aj j¼o;p∈A

δAp : (16)

The value δ̂p is considered to be the fitness of p and
gives the expected hypervolume loss that can be
attributed to p when p and o� 1 uniformly randomly
chosen solutions from P are removed from P. The
formula can be simplified (cf. Bader and Zitzler,
2011), such that the actual fitness calculation can be
carried out along with a regular ‘hypervolume by
slicing objectives’ computation:

δ̂p ¼ ∑
o

i¼1

αi
i

∑
A⊆P; Aj j¼i;p∈A

λw H A; P;Rð Þð Þ (17)

where αi :¼ ∏i�1
j¼1

o� j

Pj j � j
. As demonstrated by Bader

and Zitzler (2011), this fitness scheme not only has
advantages regarding the regular hypervolume-based
fitness (i.e. δp = λw(H({p},P,R)) but also is useful in
particular in the context of sampling.

7.2. Fitness estimation by hypervolume sampling
Although the fitness values defined previously can be
computed exactly (Bader and Zitzler, 2011), a sampling
approach, in which δ̂p is only approximated, allows to
circumvent the running time complexity of the exact
hypervolume computation, which grows exponentially
with the number of objectives under the assumption that
P≠NP(Bringmann and Friedrich, 2008), and to tackle
an arbitrary number of objectives efficiently. To this
end, first a sampling box S⊂Z needs to be defined such
that it (i) contains both the image of the population in the
objective space and the reference set and (ii) is as small
as possible. We here use the following definition:

S :¼ ðz1;…; znÞ∈Z ∀1≤i≤n : li≤zi≤uigjf (18)

where

li :¼ min
a∈P

f i að Þ ui :¼ max
ðr1;…;rnÞ∈R

ri (19)

for 1≤ i≤ n; hence, the volume V of the sampling
space S is given by V ¼ ∏n

i¼1max 0; ui � lif g.
As discussed in Section 3, the idea now is to

randomly draw samples from S and count, roughly
speaking, for each hyperrectangle H(A,P,R) how many
samples are hits, that is, insideH(A,P,R), and howmany
are misses, that is, outside. Thereby, the number of hits
divided by the number of samples provides an estimate
λ̂ H A; P;Rð Þð Þ for the ratio of the volume of H(A,P,R)
and V in the unweighted case, that is, if w(z) = 1 for all
z∈Z. In the general case, we propose to use sampling
according to the weight function in order to determine
λ̂w H A; P;Rð Þð Þ, see Section 3.

For fitness estimation, though, it is not necessary to
explicitly determine the λ̂w H A; P;Rð Þð Þ values for all
hyperrectangles H(A,P,R). Instead, for each sampling
point Zj, the fitness estimates of all individuals can be
updated directly. First, the set A of all solutions weakly
dominating Zj is determined, implying that Zj is a hit
regarding H(A,P,R) (and only regarding H(A,P,R)).
Then, for each individual p∈A, the fitness estimate δ̂p
is updated as follows:

δ̂p ¼ δ̂p þ
α Aj j
Aj j �

V

M
(20)

provided that H(A,P,R) is a relevant partition, that is,
A lies not beyond the reference set and does not
contain more elements than the number of solutions
to be removed from P‴. The full fitness estimation
procedure, which details Step 14 in Algorithm 3, is
given by Algorithm 4.
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8. EXPERIMENTAL VALIDATION

In the following, instances of the different methods to
articulate user preference by a weighted hypervolume
presented in Sections 4, 5 and 6 are investigated.
Thereby, the algorithmic framework presented in
Section 7 is used. All algorithms are applied to test
problems with different numbers of objectives to
explore the crucial questions, whether (i) optimizing
the respective weight function leads to the desired
distribution of solutions and (ii) whether using the
weight-specific algorithm W-HypE is advantageous
compared with using a general EMO algorithm such
as NSGA-II, or compared with using W-HypE with
a different weight function. To this end, we apply
the following two techniques:

1 The obtained Pareto front approximations are
shown visually for one representative run. This
mainly serves to illustrate the preference the weight
function is expressing.

2 For a large number of runs, the hypervolume of all
Pareto front approximations is calculated with

respect to all weight functions used in this study.
By statistical analyses, it is then tested whether the
differences in hypervolume are statistically
significant.

8.1. Experimental setup
8.1.1. Compared weight functions and reference
algorithms. In the following, the algorithm W-HypE
with the following weight functions is investigated
(the parameters used are listed in Table I):

w1: An exponential distribution to stress one of the
objectives, according to Section 4.1.

w2: A multivariate normal distribution according to
Section 4.2 to stress one preference point m. For
the bi-objective example, the preference point
can be overachieved, whereas for the higher
dimensions, m is infeasible.

w3: A distribution that mimics a Tchebycheff
scalarization. The resulting Dirac ridge is set
to linearly decrease to 0 towards the reference
point. As smoothing function, a symmetric
normal distribution is used.

w4: The weight function that corresponds to the
desirability function, see Figure 13:

φ zð Þ ¼ 1
2
� arctan b z� að Þð Þ

π
(21)

This desirability function mimics a preference
to achieve the objective at a, where b
determines the specificity of the preference.

w5: A uniform distribution overlapping with a small
portion of the Pareto front.

w6: A Dirac ridge (for 2d) and uniform distribution
(for 3d, 7d), respectively, to mimic the ε-
constraint. A negative-only normal distribution
smoothens the uniform by convolution.

NSGA-II (Deb et al., 2000), SPEA2 (Zitzler et al.,
2001) and IBEA (Zitzler and Künzli, 2004) serve as
reference algorithms; for the latter, the ε-indicator has
been used as preliminary experiments showed this
variant to be superior to the one using the hypervolume
indicator. The main purpose of comparing W-HypE
against these standard algorithms is investigating the
specificity of W-HypE, not showing a general
superiority: if our concept of preference integration is
reasonable, then none of the reference algorithms
should provide better Pareto set approximations than
W-HypE with respect to the preference considered.

The parameters of IBEA are set as κ = 0.05 and
ρ= 1.1. All algorithms are run for 100 generations.
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New individuals are generated by the SBX crossover
operator with ηc= 15 and by normally distributed
mutation with standard deviation σ= 1/20 (Deb,
2001). The crossover and mutation probabilities are
set to 1 and 0.2, respectively.

8.1.2. Details on W-HypE and test problems. To
optimize according to the weight functions listed in
Section 8.1.1, W-HypE as presented in Section 7 is
used. Mating selection is performed randomly,
whereas environmental selection uses 10 000 samples
to estimate the fitness values δa according to (20). To
substantially speed-up the algorithms, the removal of
solutions occurs in a single operation on problems
with more than two objectives, that is, without
reestimating the fitness values after each removal step
as in the greedy variant of W-HypE used on bi-
objective problems. Samples are generated using
MATLAB® partly built-in functions and also user-
defined functions.

For the bi-objective test problems, the population
size α and the number of offspring λ is set to 25. As
test problem, ZDT1 (Zitzler et al., 2000) is used. For
three and more objectives, α and λ are doubled to 50,
and as test problem, DTLZ2 (Deb et al., 2005) is
employed. For both test problems, the number of
decision variables is 20.

8.1.3. Statistical method. For a concise comparison
of the methods with respect to the different weight
functions involved, the following experiment is
carried out: for a given number of objectives, 2, 3 or
7, L= 50 runs are performed for all k = 9 algorithms
listed in Section 8.1.1. The k � L= 450 Pareto front
approximations are then evaluated with respect to all
b = 6 weight functions by the following procedure:
first, 100 000 samples are generated according to the
examined weight function. Using these samples, the
hypervolume of all runs is approximated, leading to
b � k � L= 2700 hypervolume values hijl.

For each pair of algorithm Aj, 1≤ j≤ k and weight
function wi, 1≤ i≤ b, the mean of all L hypervolume
values is listed in a table. To simplify the presentation,
the hypervolume values are normalized for each
weight function wi, such that for algorithm Aj and
weight wi

hij :¼
1
L ∑

L
l¼1hijl


 �
�minjlhijl

maxjlhijl �minjlhijl
(22)

is reported. To test whether a significant influence of
the weight and the algorithm used exists on the

hypervolume values hijl, the Scheirer–Ray–Hare
(SRH) test (Scheirer et al., 1976) is used as a non-
parametric version of two-way ANOVA. This test is
based on ranks, extending Kruskal–Wallis to multiple
factors. For all SRH tests, both the influence of the
weight function and the algorithm, and the interaction
thereof are highly significant. The latter means that the
reported hypervolume means hij must be examined for
each weight function—this is where the nature and
direction of the interaction can be found. Therefore,
a post-hoc multiple comparison is performed to see
which differences in performance are significant for
a fixed weight function. To this end, the Conover–
Inman post hoc test with a significance level of 1%
according to Conover (1999) is carried out. To display
the effect size of the difference too, the mean rank of
the algorithms is reported as well, normalized to 0
(achieving the best possible ranks 1 to 50) to 1
(reaching the worst ranks 8 � 50 + 1 to 9 � 50).

8.2. Results
8.2.1. Visual inspection. The resulting populations
after 100 generations are shown in Figure 14 for the
bi-objective ZDT1 problem, in Figure 15 for the
three-objective DTLZ2 problem and in Figure 16 for
the seven-objective DTLZ2 problem exemplary for
one run. The weight functions are indicated by
contour lines at the intervals of 10% of the maximum
value that arises. The contour lines do not reflect the
actual weight but only the relative distribution thereof.
Additionally, a grey shading indicates the weight
(darker colours meaning larger weight). As we tested
multiple runs for each test case that led to similar
results, we display only one run to illustrate the
influence of the weight on the distribution of points.

As expected, we can see that W-HypE focused the
search on regions where the weight is large. In
particular, W-HypE allows to minimize certain
objectives (i), focus the search towards preference
points (ii), along the direction given by the weights
of the Tchebycheff approach (iii) and towards points
with higher values of the desirability functions (iv).
It also allows to focus on preference regions (v) and
the resulting solutions can meet the desired constraints
in the ε-constraint approach (vi). In contrast, the
reference algorithms IBEA, NSGA-II and SPEA2
show more or less diverse sets of points, which cannot
be influenced directly by the preferences of the user. It
is important to point out that in comparison with the
classical preference approaches, W-HypE always
offers a set of solutions—allowing a decision maker
to gain additional information about the local shape
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of the Pareto front close to the points of interest within
one run of the algorithm.

8.2.2. Test statistics. The mean hypervolume values
as well as the mean ranks from the Conover–Inman
tests for each combination of weight wi and algorithm
Aj are shown in Table IIa for n = 2 objectives, Table IIb
for n = 3 and Table IIc for n = 7, respectively.

We can observe that for a given weight function,
W-HypE optimizing this weight function is con-
sistently resulting in the highest hypervolume values.
The only exception where W-HypE optimizing the
desired weight function is not statistically significantly
outperforming all other algorithms is for the seven-
objective DTLZ2 problem and the weight function
w1 stressing the third objective. However, the only
algorithm reaching higher hypervolume values in this
case is IBEA, which is known to accumulate solutions
close to the boundaries of the Pareto front (Li et al.,
2011), resulting in high-weighted hypervolume values
when the exponential weight w1 is employed.

8.2.3. Runtimes. It has to be remarked that although
the actual runtime of calculating the hypervolume
indicator exactly is expected to increase exponentially

with the number of objectives (Bringmann and
Friedrich, 2008; Beume, 2009), the Monte Carlo
sampling within W-HypE makes it feasible to solve
problems with a reasonable number of objectives. With
the current implementation,4 the seven-objective runs
presented here take on average between 1.67 s (for w2)
and 4.22 s (for w6) per generation on an Intel Core 2
Duo laptop with 2.8GHz, 4GB of RAM and Windows
Vista. Other studies on integrating Monte Carlo
sampling into steady-state algorithms such as the
SMS-EMOA or the (μ +1) MO-CMA-ES, which
employ the standard hypervolume indicator, report
comparable runtimes per function evaluation for the
same population size of 50 (Voß et al., 2010). When
W-HypE is, for example, run with a Gaussian weight
function with m5d= (.5,.4,.2,.1,.3), t=1, σϵ=0.05 and
σt=0.5 using 10 000 samples on the same five-
objective DTLZ2 problem as those of Voß et al.
(2010),W-HypE is about twice as fast per hypervolume
computation than the implementations of SMS-EMOA

4Combined Java/MATLAB code, available for download at
http://hypervolume.gforge.inria.fr/.
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Figure 14. Pareto front approximations on bi-objective ZDT1 (front shown as solid line) for the following weight functions:
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and MO-CMA-ES reported by Voß et al. (2010). Note
that the choice of the weight function in W-HypE by
itself has an influence on the algorithm's runtime:
although using w2 results in the smallest runtime and
using w6 results in the highest runtime in the previous
seven-objective example, the runtime per hypervolume
estimation was only for w6 higher than the reported
times by Voß et al. (2010).

8.3. Applications in discrete domain
The previous results showed how the weighted
hypervolume indicator approach of W-HypE changes
the search bias according to a specified weight
function. The used ZDT and DTLZ problems,
however, are simple test functions with some known
defects such as separability (Huband et al., 2006).
As the concepts presented in this paper are
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Figure 15. Pareto front approximations on DTLZ2 (sphere-shaped front) with three objectives for the following weight
functions: (a) w1 (exponential), (b) w2 (preference point), (c) w3 (Tchebycheff), (d) w4 (desirability function), (e) w5 (uniform
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independent of the variation operators, they should be
therefore applicable to other problems as well. In
order to show that W-HypE can also be applied to
problems in discrete domain, we here use the
presented algorithm to optimize a bi-objective 0/1
knapsack problem, taken from the PISA test suite

(Bleuler et al., 2003) and used with the settings of
Table III. Overall, four different weight functions have
been tested: stressing the first objective ( wKP

1 ),
preference point (wKP

2 ), preference region (wKP
5 ) and ε-

constraint (wKP
6 ), the definition of which can be found

in Table IV.

8.3.1. Visual inspection. Figure 17 shows the final
population after 375 000 function evaluations of an
exemplary run for each of the four weight functions.
In addition, the empirical 10% attainment surface from
10 independent runs of the standard HypE algorithm,
which employs the standard (unweighted) hypervolume
indicator, is shown for comparison. Note that the exact
Pareto front for the used instance is not known.

Table III. Used parameters of the bi-objective 0/1 knapsack
problem in PISA

Number of items 250
Mutation type Independent bitflip
Recombination None
Bitflip probability 2/250
Population size 25
Number of generations 15 000

Table IV. Parameters of the weight functions used in the knapsack experiments

wdf Purpose Type Section Parameters

wKP
1 Objective stressing Simple 4.1 λ= 100, bl= (3600,0), bu= (10000,10000), s= 1

wKP
2 Preference point Simple 4.2 m2d = (4800,4200), t= (1,2), σϵ= 70, σt= 700

wKP
5 Preference region Simple 4.3 l= (4200,4200), u= (4600,4800)

wKP
6 ε-constraint Classical 6.2 uniform weight: l = (4200,0), u= (4200,10000).

Smoothing with negative normal distribution and σ= 100
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4000

4500

5000

5500

6000

6500

(a)

3500 4000 4500 5000 5500 6000

4000

4500

5000

5500

6000

6500

(b)

3500 4000 4500 5000 5500 6000

4000

4500

5000

5500

6000

6500

(c) (d)

Figure 17. Final population of an exemplary run of W-HypE (after 15 000 generations) on the bi-objective knapsack
problem: wKP

1 (a), wKP
2 (b), wKP

5 (c) and wKP
6 (d). In addition, the empirical 10% attainment surface for 10 independent runs

of HypE in generation 15 000 is shown.

Table V. Normalized hypervolume values hij with respect to the weight functionswKP
1 ,wKP

2 ,wKP
5 andwKP

6 on the bi-objective
knapsack problem for the four W-HypE versions employing those weight functions as well as for the standard HypE
algorithm

W-HypE wKP
1 W-HypE wKP

2 W-HypE wKP
5 W-HypE wKP

6 HypE

wKP
1 0.60* (0.07) 0.00 (1.00) 0.01 (0.75) 0.18 (0.48) 0.39* (0.20)

wKP
2 0.17 (1.00) 0.99* (0.00) 0.67 (0.50) 0.40 (0.76) 0.95 (0.25)

wKP
5 0.06 (0.92) 0.10 (0.83) 0.98* (0.00) 0.47 (0.50) 0.80 (0.25)

wKP
6 0.91 (0.50) 0.00 (0.96) 0.04 (0.79) 0.99* (0.01) 0.98 (0.24)

In brackets, the normalized mean rank of the Kruskal–Wallis ranking is reported. The significantly largest values at α= 0.01 are highlighted
in bold face.
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It turns out that also in the discrete case of the
knapsack problem, W-HypE is able to steer the search
towards the user's preferences—although the distribution
of solutions, in particular forwKP

1 andwKP
2 , do not show a

nice convergence to the Pareto front in regions where the
weight function is low but nevertheless points are
generated. This might be caused by a generally lower rate
of creating dominated solutions than for the DTLZ and
ZDT functions.5 What can also be observed is the fact
that when focusing on certain regions of the objective
space with W-HypE, the algorithm can find solutions
in these specific regions, which outperform the solutions
found by HypE with the same number of function
evaluations. This is especially evident for the populations
shown in Figure 17(a and c). However, note that this is
not true for all runs and in particular not for all problems.6

8.3.2. Test statistics. Similar to Table II, the mean
hypervolume values and the mean ranks from a
Conover–Inman test for each combination of weight and
algorithm are shown in Table V—here for 10 independent
runs. As for the continuous test cases, it turns out that also
for the discrete knapsack problem,W-HypE optimizing a
specific weight function yields statistically significantly
better hypervolume values regarding this weight function
than when employing other weight functions.

9. CONCLUSIONS

We have presented an approach that allows to include
preferences of a decision maker into multi objective
evolutionary search by an appropriate weighting of the
hypervolume indicator. On the basis of its proven
refinement of Pareto dominance, efficient indicator-based
optimization algorithms can be developed. The paper
elaborates the previous approach by (i) presenting an
efficient method on the basis of Monte Carlo sampling
to compute the weighted hypervolume indicator for large
population sizes and high dimensions, by (ii) developing
a toolkit of useful weighting functions as well as compo-
sition methods and by (iii) showing how various classical
preference articulation methods can be transferred to
evolutionary search methods. An extensive experimental

section validates the efficiency and practicality of the
new approach by visual as well as statistically verified
results. Open issues are related to the embedding of the
previous optimization kernel into an adaptive optimization
approach that allows a close interaction of a decision
maker. For example, it may be useful to continuously
steer and refine the search in some form of interaction.

APPENDIX A WEIGHT FUNCTION
EQUIVALENT TO TRANSFORMING THE

OBJECTIVES VIA MONOTONIC DESIRABILITY
FUNCTIONS

Theorem 1
Given the desirability function φ(z) = (φ1(z),…,φn(z))
where the φi : R→ 0; 1½ � are strictly monotoniously
increasing for all 1≤ i≤ n. Transforming the objective
functions fi into φi ∘ fi and using the unweighted
hypervolume indicator is equivalent to using the
weighted hypervolume indicator with weight function
w zð Þ ¼ Πn

i¼1φ
′
i zið Þ.

Proof
After transforming the objective values to zt =φ(z),
zt ∈ φ(Z), the (unweighted) hypervolume of (1) with
w(z) = 1 reads as

ItH A;Rð Þ ¼ ∫zt∈φ H A;Rð Þð Þ1dzt (23)

where

φ H A;Rð Þð Þ ¼ z∈Zj∃a∈A : ∃r∈R : φ f að Þð Þ≼z≼φ rð Þf g
¼ fzt∈φ Zð Þj∃a∈A : ∃r∈R :

f að Þ≼φ�1 ztð Þ≼rg:
When changing the variable zt back to the original z

according to z=φ� 1(zt), the differentials dz and dzt relate
as dz=dzt ¼ Jφ�1 ztð Þ�� �� where Jφ�1 ztð Þ�� �� denotes the
determinant of the Jacobian matrix Jφ�1 ztð Þ of the inverse
of the desirability function φ. As φi : zi↦φi(z), we have

Jφ�1 ztð Þ�� �� ¼ ∏
n

i¼1

�
φ�1
i

	′
zti
� � ¼ ∏

n

i¼1

1

φ′i φ
�1
i ztið Þð Þ ¼ ∏

n

i¼1

1
φ′i zið Þ

and (23) becomes

IwH A;Rð Þ ¼ ∫z∈H A;Rð Þ∏
n

i¼1
φ′i zið Þdz

¼ ∫z∈H A;Rð Þwt zð Þdz
where wt ¼ ∏n

i¼1φ
′
i zið Þ can be seen as the new

weight function. □

5As a consequence, the number of function evaluations had
to be chosen larger in the knapsack example than for the
continuous test cases.
6When for example applied to the network processor design
problem EXPO from the PISA test function suite, W-HypE
is typically finding only the solutions dominated by HypE
when the user is aiming at regions of the Pareto front where
few points are located or where there is a hole in the
discontinuous Pareto front (results not shown).

DIRECTED MULTIOBJECTIVE OPTIMIZATION BASED ON THE WEIGHTED HYPERVOLUME 315

Copyright © 2013 John Wiley & Sons, Ltd. J. Multi-Crit. Decis. Anal. 20: 291–317 (2013)
DOI: 10.1002/mcda



REFERENCES

Auger A, Bader J, Brockhoff D, Zitzler E. 2009a.
Articulating user preferences in many-objective problems
by sampling the weighted hypervolume. Genetic and
Evolutionary Computation Conference (GECCO 2009),
ACM; 555–562.

Auger A, Bader J, Brockhoff D, Zitzler E. 2009b.
Investigating and exploiting the bias of the weighted
hypervolume to articulate user preferences. Genetic and
Evolutionary Computation Conference (GECCO 2009),
ACM; 563–570.

Auger A, Bader J, Brockhoff D, Zitzler E. 2009c. Theory of
the hypervolume indicator: optimal μ-distributions and
the choice of the reference point. Foundations of Genetic
Algorithms (FOGA 2009), ACM; 87–102.

Auger A, Bader J, Brockhoff D, Zitzler E. 2012.
Hypervolume-based multiobjective optimization:
theoretical foundations and practical implications.
Theoretical Computer Science 425: 75–103.

Bader J, Zitzler E. 2011. HypE: an algorithm for fast
hypervolume-based many-objective optimization.
Evolutionary Computation 19(1): 45–76.

Bader J, Deb K, Zitzler E. 2010. Faster hypervolume-based
search using Monte Carlo sampling. Conference on
Multiple Criteria Decision Making (MCDM 2008),
Springer: Berlin Heidelberg; 313–326.

Berghammer R, Friedrich T, Neumann F. 2010. Set-based
multi objective optimization, indicators, and deteriorative
cycles. Genetic and Evolutionary Computation
Conference (GECCO 2010), 495–502.

Beume N. 2009. S -metric calculation by considering
dominated hypervolume as Klee's measure problem.
Evolutionary Computation 17(4): 477–492.

Beume N, Rudolph G. 2006. Faster S-metric calculation by
considering dominated hypervolume as klee's measure
problem. Technical Report CI-216/06, SFB 531
Computational Intelligence, Universität Dortmund.

Beume N, Naujoks B, Emmerich M. 2007. SMS-EMOA:
multiobjective selection based on dominated hypervolume.
European Journal of Operational Research 181: 1653–1669.

Bleuler S, Laumanns M, Thiele L, Zitzler E. 2003. PISA—a
platform and programming language independent interface
for search algorithms. Conference on Evolutionary Multi-
Criterion Optimization (EMO 2003), Springer: Berlin
Heidelberg; 494–508.

Bradstreet L, While L, Barone L 2008. A fast incremental
hypervolume algorithm. IEEE Transactions on Evolu-
tionary Computation 12(6): 714–723.

Bradstreet L, Barone L, While L. 2009. Updating exclusive
hypervolume contributions cheaply. Congress on
Evolutionary Computation (CEC'2009), IEEE Press:
Piscataway, NJ, USA; 538–544.

Bringmann K, Friedrich T. 2008. Approximating the volume
of unions and intersections of high-dimensional
geometric objects. International Symposium on
Algorithms and Computation (ISAAC 2008), Springer:
Berlin Heidelberg; 436–447.

Bringmann K, Friedrich T. 2009a. Approximating the
least hypervolume contributor: NP-hard in general,
but fast in practice. Conference on Evolutionary
Multi-Criterion Optimization (EMO 2009), Springer:
Berlin Heidelberg; 6–20.

Bringmann K, Friedrich T. 2009b. Don't be greedy when
calculating hypervolume contributions. Foundations of
Genetic Algorithms (FOGA 2009), ACM: New York,
NY, USA; 103–112.

Bringmann K, Friedrich T. 2013a. Parameterized average-
case complexity of the hypervolume indicator. Genetic
and Evolutionary Computation Conference (GECCO
2013), Blum C, (ed). ACM: New York, NY, USA;
575–582.

Conover WJ. 1999. Practical Nonparametric Statistics
(3rd edn). John Wiley: New York, NY, USA.

Deb K. 2001. Multi-objective optimization using evolu-
tionary algorithms. Wiley: Chichester, UK.

Deb K, Jain H. 2012. Handling many-objective problems
using an improved NSGA-II procedure. IEEE Congress
on Evolutionary Computation (CEC 2012), IEEE Press:
Piscataway, NJ, USA; 1–8.

Deb K, Agrawal S, Pratap A, Meyarivan T. 2000. A fast
elitist non-dominated sorting genetic algorithm for multi
objective optimization: NSGA-II. Conference on Parallel
Problem Solving from Nature (PPSN VI), Springer:
Berlin Heidelberg; 849–858.

Deb K, Thiele L, Laumanns M, Zitzler E. 2005. Scalable test
problems for evolutionary multi objective optimization. In
Evolutionary Multiobjective Optimization: Theoretical
Advances and Applications, Abraham A, Jain R, Goldberg
R (eds). Springer: Berlin Heidelberg; 105–145.

Devroye L. 1986. Non-Uniform Random Variate
Generation. Springer: Paris.

Emmerich M, Fonseca C. 2011. Computing hypervolume
contributions in low dimensions: asymptotically optimal
algorithm and complexity results. Conference on
Evolutionary Multi-Criterion Optimization (EMO 2011),
Springer: Berlin Heidelberg; 121–135.

Emmerich M, Beume N, Naujoks B. 2005. An EMO
algorithm using the hypervolume measure as selection
criterion. Conference on Evolutionary Multi-Criterion
Optimization (EMO 2005), Springer: Berlin Heidelberg;
62–76.

Everson R, Fieldsend J, Singh S. 2002. Full elite-sets for
multiobjective optimisation. Conference on Adaptive
Computing in Design and Manufacture (ADCM 2002),
Springer: Berlin Heidelberg; 343–354.

Fleischer M. 2003. The measure of Pareto optima.
Applications to multi objective metaheuristics. Conference
on Evolutionary Multi-Criterion Optimization (EMO
2003), Springer: Berlin Heidelberg; 519–533.

Fonseca CM, Paquete L, López-IbáñezM. 2006. An improved
dimension-sweep algorithm for the hypervolume indicator.
Congress on Evolutionary Computation (CEC 2006), IEEE
Press: Piscataway, NJ, USA; 1157–1163.

Friedrich T, Horoba C, Neumann F. 2009. Multiplicative
approximations and the hypervolume indicator. Genetic

D. BROCKHOFF ET AL.316

Copyright © 2013 John Wiley & Sons, Ltd. J. Multi-Crit. Decis. Anal. 20: 291–317 (2013)
DOI: 10.1002/mcda



and Evolutionary Computation Conference (GECCO
2009), ACM; 571–578.

Goldberg DE 1989. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-Wesley:
Reading, Massachusetts.

Harrington J. 1965. The desirability function. Industrial
Quality Control 21(10): 494–498.

Hoeffding W. 1963. Probability inequalities for sums of
bounded random variables. Journal of the American
Statistical Association 58(301): 13–30.

Huband S, Hingston P, Barone L, While L. 2006. A review
of multiobjective test problems and a scalable test
problem toolkit. IEEE Transactions on Evolutionary
Computation 10(5): 477–506.

Hughes EJ. 2011. Many-objective directed evolutionary line
search. Genetic and Evolutionary Computation
Conference (GECCO 2011), ACM; 761–768.

Igel C, Hansen N, Roth S 2007. Covariance matrix
adaptation for multi objective optimization. Evolutionary
Computation 15(1): 1–28.

Ishibuchi H, Tsukamoto N, Nojima Y. 2008. Evolutionary
many-objective optimization: a short review. Congress
on Evolutionary Computation (CEC 2008), IEEE Press:
Piscataway, NJ, USA; 2424–2431.

Knowles J. 2002. Local-search and hybrid evolutionary
algorithms for Pareto optimization. PhD thesis,
University of Reading.

Knowles J, Corne D, Fleischer M. 2006. Bounded archiving
using the Lebesgue measure. Congress on Evolutionary
Computation (CEC 2003), Canberra, Australia. IEEE
Press: Piscataway, NJ, USA; 2490–2497.

Li M, Liu L, Lin D. 2011. A fast steady-state ε-dominance
multi objective evolutionary algorithm. Computational
Optimization and Applications 48(1): 109–138.

Miettinen K. 1999. Nonlinear Multiobjective Optimization.
Kluwer: Boston, MA, USA.

Scheirer CJ, Ray WS, Hare N 1976. The analysis of ranked
data derived from completely randomized factorial
designs. Biometrics 32(2): 429–434.

Srinivas N, Deb K. 1994. Multiobjective optimization using
nondominated sorting in genetic algorithms. Evolutionary
Computation 2(3): 221–248.

Voß T, Friedrich T, Bringmann K, Igel C. 2010. Scaling up
indicator-based MOEAs by approximating the least
hypervolume contributor: a preliminary study. GECCO
workshop on Theoretical Aspects of Evolutionary
Multiobjective Optimization, ACM; 1975–1978.

Wagner T, Trautmann H. 2010. Integration of preferences in
hypervolume-based multi objective evolutionary algorithms
by means of desirability functions. IEEE Transactions on
Evolutionary Computation 14(5): 688–701.

Wagner T, Beume N, Naujoks B. 2007. Pareto-,
aggregation-, and indicator-based methods in many-
objective optimization. Conference on Evolutionary
Multi-Criterion Optimization (EMO 2007), Springer:
Berlin Heidelberg; 742–756.

While L, Hingston P, Barone L, Huband S. 2006. A faster
algorithm for calculating hypervolume. IEEE
Transactions on Evolutionary Computation 10(1): 29–38.

Wierzbicki A. 1999. Reference point approaches. In
Multicriteria Decision Making: Advances in MCDM
Models, Algorithms, Theory, and Applications, Gal T,
Stewart T, Hanne T (eds). Kluwer: Boston, Dordrecht,
London; 9–1–9–39.

Zitzler E. 2001. Hypervolume metric calculation. Available
at ftp://ftp.tik.ee.ethz.ch/pub/people/zitzler/hypervol.c

Zitzler E, Künzli S. 2004. Indicator-based selection in
multiobjective search. Conference on Parallel Problem
Solving from Nature (PPSN VIII), Springer: Berlin
Heidelberg; 832–842.

Zitzler E, Thiele L. 1998a. An evolutionary approach for
multiobjective optimization: the strength pareto approach.
TIK Report 43, Computer Engineering and Networks
Laboratory (TIK), ETH Zurich.

Zitzler E, Thiele L. 1998b. Multiobjective optimization
using evolutionary algorithms—a comparative case
study. Conference on Parallel Problem Solving from
Nature (PPSN V), 292–301.

Zitzler E, Deb K, Thiele L. 2000. Comparison of
multiobjective evolutionary algorithms: empirical results.
Evolutionary Computation 8(2): 173–195.

Zitzler E, Laumanns M, Thiele L. 2001. SPEA2: improving
the strength Pareto evolutionary algorithm. TIK Report
103, Computer Engineering and Networks Laboratory
(TIK), ETH Zurich.

Zitzler E, Thiele L, Laumanns M, Fonseca CM, Grunert da
Fonseca V. 2003. Performance assessment of multiobjective
optimizers: an analysis and review. IEEE Transactions on
Evolutionary Computation 7(2): 117–132.

Zitzler E, Brockhoff D, Thiele L. 2007. The hypervolume
indicator revisited: on the design of Pareto-compliant
indicators via weighted integration. In Conference on
Evolutionary Multi-Criterion Optimization (EMO 2007),
Springer: Berlin Heidelberg; 862–876.

Zitzler E, Knowles J, Thiele L. 2008. Quality assessment of
Pareto set approximations. In Multiobjective
Optimization: Interactive and Evolutionary Approaches,
Branke J, Deb K, Miettinen K, Slowinski R (eds).
Springer: Berlin Heidelberg; 373–404.

Zitzler E, Thiele L, Bader J. 2010. On set-based
multiobjective optimization. IEEE Transactions on
Evolutionary Computation 14(1): 58–79.

DIRECTED MULTIOBJECTIVE OPTIMIZATION BASED ON THE WEIGHTED HYPERVOLUME 317

Copyright © 2013 John Wiley & Sons, Ltd. J. Multi-Crit. Decis. Anal. 20: 291–317 (2013)
DOI: 10.1002/mcda

ftp://ftp.tik.ee.ethz.ch/pub/people/zitzler/hypervol.c

